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Abstract

We consider a continuous-time stochastic model of spiking neurons originally introduced by
Ferrari et al. in [8]. In this model, we have a finite or countable number of neurons which are
vertices in some graph G where the edges indicate the synaptic connection between them. We
focus on metastability, understood as the property for the time of extinction of the network to
be asymptotically memory-less, and we prove that this model exhibits two different behaviors
depending on the nature of the specific underlying graph of interaction G that is chosen. In
this model the spiking activity of any given neuron is represented by a point process, which
rate fluctuate between 1 and 0 over time depending on whether the membrane potential is
positive or null. The membrane potential of each neuron evolves in time by integrating all
the spikes of its pre-synaptic neurons up to the last spike of the said neuron, so that when
a neuron spikes, its membrane potential is reset to 0 while the membrane potential of each
if its post-synaptic neurons is increased by one unit. Moreover each neuron is exposed to
a leakage effect, modeled as an abrupt loss of membrane potential which occurs at random
times driven by a Poisson process of some fixed rate γ. It was previously proven that when
the graph G is the infinite one-dimensional lattice, this model presents a phase transition with
respect to the parameter γ. It was also proven that, when γ is small enough, the renormalized
time of extinction (the first time at which all neurons have a null membrane potential) of a
finite version of the system converges in law toward an exponential random variable when the
number of neurons goes to infinity. The present article is divided into two parts. First we
prove that, in the finite one-dimensional lattice, this last result doesn’t hold anymore if γ is
not small anymore, in fact we prove that for γ > 1 the renormalized time of extinction is
asymptotically deterministic. Then we prove that conversely, if G is the complete graph, the
result of metastability holds for any positive γ.

MSC Classification: 60K35; 82C32; 82C22.
Keywords: systems of spiking neurons; interacting particle systems; extinction time; metastabil-
ity.

1 Introduction
In this paper we study the asymptotic behavior of a system of interacting point processes introduced
in [8], which is aimed to offer a good model for neural interactions.

Roughly speaking, the model consists of a graph which nodes represents neurons and the edges
the synapses between them. Each neuron has a membrane potential which evolves in time. The
spiking activity of each neuron is represented by a continuous time point process, which rate
evolves in time with respect to the membrane potential of the neuron. Moreover all neurons are
also exposed to a leakage effect, which consists in a sudden loss of membrane potential occurring
at random times driven by a Poisson process of some parameter γ. The membrane potential of
each neuron integrates all the spiking activity of its pre-synaptic neurons up to the last event by
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which the said neuron has been affected (a leakage or a spike), so that the membrane potential of
this neuron is also reset to 0 whenever it spikes.

The idea of using stochastic processes to model biological neural networks dynamics has a
now a long history and the reader may refer to [16] for a general historical review. Inside these
stochastic models, the subcategory making use of point processes has become increasingly popular
during the last decades (considering for example Hawkes processes [19, 24, 25, 23] as well as Wold
processes [22]). The model considered in this article has the specificity that the membrane potential
is reset to 0 after each spike, which made it closer to the model introduced in [20] for example.
Moreover it implies that each of the spiking point processes alone has a memory of variable length,
which an interesting feature from a biological point of view. It can be seen as a continuous time
version of the model introduced in [9], sometime named the Galves-Löcherbach model, or simply
GL model. Other versions of this model has been studied since it has been introduced, see for
example [21, 11, 18, 4, 5, 6]. We refer to [10] for a general review.

Two crucial area of research in the study of biological neural networks are the question of
criticality and metastability [26, 27, 14, 15]. An other interrogation is the topology of the networks.
While many complex real life networks have been extensively studied [17], leading to famous models
like Small World graphs, a consensus on the topology of neuronal networks has yet to be done. The
model we consider here was originally introduced and studied in [8] on the infinite one-dimensional
lattice. It was proven there that for this graph, the model is subject to a phase-transition with
respect to the leakage parameter γ, namely there exists a critical value γc such that for any γ < γc
each neuron continues to spike infinitely many times with positive probability while for γ > γc the
spiking activity stop with probability 1. The same model was then studied in [3] on the finite one-
dimensional lattice of arbitrary length, and it was proven that for γ small enough the renormalized
time of extinction of the system is asymptotically memory-less when the number of neurons grows,
or in other words, asymptotically exponentially distributed. This feature is a crucial property of
metastable dynamics as proposed in the seminal paper [9], which was originally concerned with
interacting particle physics.

Here we first prove that for the model defined on the finite one-dimensional lattice of arbitrary
length this last result doesn’t hold anymore if you take γ big (actually γ > 1 is sufficient), and
that in fact for such a γ the renormalized extinction time is asymptotically deterministic, so that
it is highly non-metastable. Then we turn ourself to the finite complete graph, and we prove that,
on the contrary, the result of metastability holds for any positive γ in this case. This introduces
an interesting dichotomy with respect to metastability between loosely connected graphs, like the
one-dimensional lattice, and highly connected ones, such as the complete graph.

This paper is organized as follows. In Section 2 we give a formal definition of the model, and
we state the previously proven results as well as the two results that this article is concerned with.
In Section 3 we give the proof of the result related to the one-dimensional lattice. In Section 4 we
give the proof of the result related to the complete graph.

2 Definition and results
We consider the following model. V is a finite or countable set representing the neurons, and to
each i ∈ V is associated a set Vi of presynaptic neurons. If you consider the elements of V as
vertices, and draw and edge from i to j whenever i ∈ Vj , that is if you define E = {(i, j) : i ∈ Vj},
then you obtain the graph of the network G = (V,E). Each neuron i has a membrane potential
evolving over time, represented by a stochastic process which takes its values in the set N of non-
negative integers and which is denoted (Xi(t))t≥0. Moreover each neuron is also associated with
a Poisson process (N†i (t))t≥0 of some parameter γ, representing the leak times. At any of these
leak times the membrane potential of the neuron concerned is reset to 0. Finally an other point
process (Ni(t))t≥0 representing the spiking times is also associated to each neuron, which rate at
time t is given by φ(Xi(t)), φ being some function called the rate function. When a neuron spikes
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its membrane potential is reset to 0 and the membrane potential of all of its post-synaptic neurons
is increased by one (that is the neurons of the set {j : i ∈ Vj}). All the point processes involved
are assumed to be mutually independent.

More formally, beside asking that (N†i (t))t≥0 be a Poisson process of some parameter γ, this is
the same as saying that (Ni(t))t≥0 is the point process characterized by the following equation

E(Ni(t)−Ni(s)|Fs) =

∫ t

s

E(φ(Xi(u))|Fs)du (2.1)

where
Xi(t) =

∑
j∈Vi

∫
]Li(t),t[

dNj(s), (2.2)

Li(t) being the time of the last event affecting neuron i before time t, that is,

Li(t) := sup
{
s ≤ t : Ni({s}) = 1 or N†i ({s}) = 1

}
. (2.3)

(Ft)t≥0 is the standard filtration for the point processes involved here. See [8] for more details.

In the present paper the function φ will always be the hard-threshold function defined for any
x ∈ R by φ(x) = 1x>0. For any fixed t ≥ 0 and i ∈ V the quantity of interest is then given by
1Xi(t)>0, as it corresponds to the infinitesimal spiking rate of neuron i at time t. Depending on
whether 1Xi(t)>0 is equal to 1 or 0 we will say that neuron i is active or quiescent respectively.
The dynamic described in the first paragraph of this section can then be reformulated as follows.
Whenever a spike occurs, the neuron that spiked becomes quiescent, as can be seen from equations
(2.3) and (2.2), while its post-synaptic neurons become active if they weren’t already, as can be
seen from equation (2.2). The choice of the hard-threshold for the function φ has however no
consequence on the leak times, which effect of getting any active neuron to the quiescent state
result from equations (2.3) and (2.2). If for any i ∈ V and t ≥ 0 we write ηi(t) = 1Xi(t)>0, and
η(t) = (ηj(t))j∈V , then the resulting process (η(t))t≥0 is an interacting particle system, that is, a
Markovian process taking value in {0, 1}V (see [12]). His infinitesimal generator (see [8]) is given
by

L f(η) = γ
∑
i∈V

(
f(π†i (η))− f(η)

)
+
∑
i∈V

ηi

(
f(πi(η))− f(η)

)
, (2.4)

where f : {0, 1}V 7→ R is a cylinder function, γ is a non-negative real number, and the π†i ’s and
πi’s are maps from {0, 1}V to {0, 1}V defined for any i ∈ V as follows:

(
π†i (η)

)
j
=

{
0 if j = i,

ηj otherwise,

and

(
πi(η)

)
j
=


0 if j = i,

max(ηi, ηj) if i ∈ Vj ,
ηj otherwise.

The π†i ’s correspond to the leakage effect mentioned above, and the πi’s correspond to the
spikes. Of course the graph of interaction needs to satisfy some conditions of regularity for this
infinitesimal generator to even make sense, but the instantiations that we consider in this article
are simple enough to trivially satisfy these conditions. A simple way of reading the generator above
is the following. Whenever a neuron is active, it is associated with two independent exponential
random clocks of parameter 1 and γ, and it spikes or leaks respectively depending on which one
rings first.
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This model was originally introduced in [8], where a specific instantiation was studied, in which
the graph G is the infinite one-dimensional lattice, that is the graph characterized by the following.

Assumption 2.1 Let V = Z and for all i ∈ V , Vi = {i− 1, i+ 1}.

The rate function is the hard-threshold as stated above, and as it will be the case in the rest of
the paper we will not indicate it anymore in the sequel. It was proven in [8] that this instantiation
is subject to a phase transition. More precisely the following theorem was proven.

Theorem 2.2 Under Assumption 2.1 and assuming that Xi(0) ≥ 1 for all i ∈ V , there exists
a critical value γc for the parameter γ, with 0 < γc <∞, such that for any i ∈ Z

P
(
Ni([0,∞[) <∞

)
= 1 if γ > γc

and

P
(
Ni([0,∞[) =∞

)
> 0 if γ < γc.

In words there exists a critical value γc for the leakage rate which is such that the process dies
almost surely above it, and survive with positive probability below it.

For this one-dimensional lattice instantiation let ξi(t) := 1Xi(t)>0 for any i ∈ Z and t ≥ 0, so
that

(
ξ(t)

)
t≥0 is the interacting particle system taking value in {0, 1}Z which dynamic is specified

by (2.4). Now consider a finite version of the process
(
ξ(t)

)
t≥0, where the neurons aren’t anymore in

the infinite lattice but only in a finite portion of it. Fix some integer N ≥ 0 and let VN = J−N,NK
(where J−N,NK is a short-hand for Z ∩ [−N,N ]). For any i ∈ VN let the set VN,i be defined by

VN,i =


{i− 1, i+ 1} if i ∈ J−(N − 1), N − 1K,
{N − 1} if i = N,

{−(N − 1)} if i = −N.

We write
(
ξN (t)

)
t≥0 for the finite version of the lattice process, that is to say the process taking

value in {0, 1}2N+1 which dynamic is given by the generator in (2.4) when you replace V by VN
and Vi by VN,i for any i ∈ VN . By convention when no indication is given the initial state of the
process is the state where all neurons are actives. Let τN denote the time of extinction of this
finite process, that is to say the first time at which all neurons are quiescent. Formally

τN := inf{t ≥ 0 : ξN (t)i = 0 for any i ∈ J−N,NK}.

It was proven in [3] that the following hold:

Theorem 2.3 There exists a γ′c satisfying γ′c ≤ γc such that if 0 < γ < γ′c then

τN
E(τN )

D−→
N→∞

E (1),

where E denotes the expectation, D denotes a convergence in distribution and E (1) an exponential
random variable of mean 1.

In this article the first result we’re aimed to prove is that the result above (Theorem 2.3) doesn’t
hold anymore if γ is big enough. In fact we prove the following theorem.

Theorem 2.4 Suppose that γ > 1. Then the following convergence holds

τN
E(τN )

P−→
N→∞

1,

where P denotes a convergence in probability.
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This result is in some sense symmetrical to Theorem 2.3. Indeed the later tells us that in
a portion of the sub-critical region the time of extinction is asymptotically memory-less, which
means that it is highly unpredictable: knowing that the process survived up to time t doesn’t give
you any information about what should happen after time t. What we prove here is that in a
portion of the super-critical regime (indeed γc < 1 as proven in in [8]) the time of extinction is
asymptotically constant, so that it is highly predictable.

In the second part of this article we study the behaviour of the same stochastic process when
the graph of the network is the complete graph of size N .

For some N ∈ N we let V ′N = J1, NK and for any i ∈ V ′N we let V ′N,i = V ′N \ {i}. Now write(
ζN (t)

)
t≥0 for the spiking process defined on the finite complete graph of size N , that is to say

the process in {0, 1}N which dynamic is given by the generator in (2.4) when you replace V by
V ′N and Vi by V′N,i for any i ∈ V ′N . In this instantiation every neuron is connected to one another
so that when a single active neuron spikes, every other neuron becomes active. Let σN denote the
time of extinction of this finite process,

σN := inf{t ≥ 0 : ζN (t)i = 0 for any i ∈ J1, NK}.

The second result we’re aimed to prove is that for the complete graph instantiation the result
of convergence of the renormalized time of extinction toward an exponential random variable that
was proven in the lattice case for small γ now holds for any positive γ. This is the object of the
following theorem.

Theorem 2.5 For any γ > 0 the following convergence holds

σN
E(σN )

D−→
N→∞

E (1).

3 Result on the one-dimensional lattice
In the following we will repeatedly identify the state space {0, 1}Z with P(Z), the set of all subsets
of Z. Indeed any state η of the process, belonging to {0, 1}Z, can be seen as well as an element
A of P(Z), writing A = {i ∈ Z such that ηi = 1}. For all the processes involved in the proof we
will adopt the convention of writing the initial state as a superscript. For example we will write
(ξi(t))t≥0 and (ξiN (t))t≥0 to denote the infinite-lattice process and the finite version respectively,
starting at time 0 with only neuron i active and all other neurons quiescent. Note that to avoid
an overload in the notation we write i instead of {i}, which is an abuse of notation. As stated in
the previous section, in the absence of superscript the initial state is the state where all neurons
are active, in particular (ξN (t))t≥0 will denote the finite version of the process starting from the
state J−N,NK.

The present section contains two propositions. The first one tells us that the time of extinction
evolves asymptotically like a logarithm in N , and the second one tells us that the same is true for
its expectation. Theorem 2.4 is an immediate consequence of these two propositions. Our proof
use some of the ideas developed in [13] concerning the Harris contact process.

Proposition 3.1 Suppose that γ > 1. Then there exists a constant 0 < C <∞ depending on
γ such that the following convergence holds

τN
log(2N + 1)

P−→
N→∞

C.
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Proof: We define the following function

t 7→ f(t) = log
(
P
(
ξ0(t) 6= ∅

) )
.

We also define the following constant

C ′ = − sup
s>0

f(s)

s
.

The first step is to show that the function f is superadditive. For any s, t ≥ 0 we have the
following inequality

P
(
ξ0(t+ s) 6= ∅ | ξ0(t) 6= ∅

)
≥ P

(
ξ0(s) 6= ∅

)
.

Indeed saying that the process is still alive at time t is the same as saying that it possesses
at least one active neuron at time t, which happens to be the number of active neurons at time
0. Then the inequality follows from the fact that having multiple active neurons in the initial
configuration implies having a higher probability to be alive at any given time s compared to an
initial configuration with a single active neuron. Moreover this last inequality can be rewritten as
follows

P
(
ξ0(t+ s) 6= ∅

)
≥ P

(
ξ0(t) 6= ∅

)
P
(
ξ0(s) 6= ∅

)
,

and taking the log gives the superaddtivity we are looking for. Now from a well-known re-
sult about superadditive functions, sometimes called the Fekete lemma [2], we get the following
convergence

f(t)

t
−→
t→∞

− C ′. (3.5)

For any t > 0 we also have

P
(
ξ0(t) 6= ∅

)
≤ e−C

′t. (3.6)

Notice that while it is clear that 0 ≤ C ′ < ∞, it is not obvious that C ′ > 0. We show that
it is the case using a coupling with the following branching process. At time 0 there is a single
individual. Two independent exponential random clocks of parameter 1 and γ respectively are
attached to this individual. If the rate γ clock rings before the other one, then the individual dies.
In the contrary case the individual is replaced by two other individuals. Every new individual gets
his two own independent exponential clocks of parameter 1 and γ and so on. We denote by (Zt)t≥0
the process corresponding to the number of individuals of the population along the time. Note
that by hypothesis we have Z0 = 1. The expectation at time t can be explicitly computed (see for
example chapter 8 in [1]). For any γ ≥ 0 and t ≥ 0 we have

E (Zt) = e−(γ−1)t. (3.7)

The coupling is done as follows, at time 0 the only active neuron in ξ0(0) is coupled with the
only individual in Z(0). By this we mean that if this neuron becomes quiescent then the individual
dies, and if the neuron spikes, then the individual is replaced by two new individuals. When a
spike occurs, there is three possibilities: two neurons are activated, one neuron is activated, or
no neuron is activated, depending on how much neighbours are quiescent. In any of these cases
each activated neuron is coupled with a newborn individuals, and any supernumerary newborn
individual is given his own independent exponential clocks. At any time t ≥ 0 we obviously have
|ξ0t | ≤ Zt. Using (3.7) and Markov inequality it follows that

P
(
ξ0(t) 6= ∅

)
≤ P (Zt ≥ 1) ≤ e−(γ−1)t.
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Then we take the log and divide by t in the previous inequality and we obtain at the limit that
C ′ ≥ γ − 1, and from the assumption that γ > 1 we get C ′ > 0.

Let us break the suspense and already reveal that the constant C we are looking for is actually
simply the inverse of C ′. Therefore in order to prove our result we are going to prove that for any
ε > 0 we have the two following convergences

P
(

τN
log(2N + 1)

− 1

C ′
> ε

)
−→
N→∞

0, (3.8)

and

P
(

τN
log(2N + 1)

− 1

C ′
< −ε

)
−→
N→∞

0. (3.9)

Let us start with (3.8), which is the easiest part. We remark that our process is additive in the
sense that ξN (t) = ∪i∈J−N,NKξ

i
N (t). See [8] for details, it is also an immediate consequence of the

graphical construction proposed in [3]. Using additivity and inequality (3.6) we get

P (ξN (t) 6= ∅) ≤ (2N + 1)P
(
ξ0(t) 6= ∅

)
≤ (2N + 1)e−C

′t. (3.10)

Now, for any ε > 0, if you let t = ( 1
C′ + ε) log(2N + 1) then the following holds

P
(

τN
log(2N + 1)

− 1

C ′
> ε

)
= P (ξN (t) 6= ∅) ≤ e−C

′ε log(2N+1).

Then the fact that C ′ > 0 ensures us that the term on the right-hand side of the inequality
goes to 0 as N diverges, which proves (3.8).

It remains to prove (3.9). If for some N ∈ N∗ we take t =
(

1
C′ − ε

)
log(2N + 1), then we can

write

P
(

τN
log(2N + 1)

− 1

C ′
< −ε

)
= P (ξN (t) = ∅) ,

so that it suffices to show that the right-hand side converges to 0 for this choice of t as N goes to
∞. For reasons that will become clear in a moment we will actually write t = 1

C′ (1− ε
′) log(2N+1),

with ε′ = C ′ε.

From (3.5) (and from the fact that C ′ > 0) we get that for any ε > 0 and for big enough t

f(t)

t
≥ −(1 + ε′)C ′,

which can be written

P
(
ξ0t = ∅

)
≤ 1− e−(1+ε

′)C′t.

Therefore, with t = 1
C′ (1− ε

′) log(2N + 1) and N big enough we have

P
(
ξ0t = ∅

)
≤ 1− 1

(2N + 1)1−ε′2
. (3.11)

Now for any k ∈ Z we define

Fk := J(2k − 1)K log(2N + 1), (2k + 1)K log(2N + 1)K,

where K is some constant depending on N which value will be chosen later in order for
K log(2N + 1) to be an integer. We then consider a modification of the process (ξN (t))t≥0 where
all neurons at the border of one of the sub-windows Fk defined above (i.e. all neurons indexed by
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(2k+1)K log(2N +1) for some k ∈ Z) are fixed in quiescent state and therefore are never allowed
to spike. This modified process is denoted (ξ̃N (t))t≥0. We also define the following configuration

AN :=

{
2kK log(2N + 1) for k ∈ Z ∩

[
− N

2K log(2N + 1)
,

N

2K log(2N + 1)

]}
.

Notice that the fact that the neurons at the borders of the windows Fk are never allowed to
spike makes the evolution of (ξ̃N (t))t≥0 independent from one window to another. Moreover notice
that the integers belonging to AN are all at the center of one of these windows.

Now for any t ≥ 0 we define rt := max ξ0t . Considering the spiking process (ξt)t≥0 with no
leaking it is easy to see that the right edge rt can be coupled with an homogeneous Poisson process
of parameter 1, that we denote (M(t))t≥0, in such a way that for any m ≥ 0

P
(
sup
s≤t

rs ≥ m
)
≤ P

(
M(t) ≥ m

)
.

We have

E
(
eM(t)

)
= et(e−1),

so taking the exponential, using Markov inequality and taking m = K ′t (where K ′ is some
constant that we are going to fix in a moment) we get

P
(
sup
s≤t

rs ≥ K ′t
)
≤ et(e−1−K

′)

≤ et(2−K
′),

where in the last inequality we simply used the fact that e− 1 < 2.

Now taking again t = 1
C′ (1− ε

′) log(2N + 1) and K ′ = 2(1 + C ′) we get

P
(
sup
s≤t

rs ≥ m
)
≤ e−2(1−ε

′) log(2N+1),

and assuming without loss of generality that ε′ < 1
2 we get

P
(
sup
s≤t

rs ≥ m
)
≤ 1

2N + 1
. (3.12)

It is now possible to fix the value of the constant K we introduced earlier. We take

K = inf

{
x ∈ R such that x ≥ K ′

C ′
and x log(2N + 1) ∈ N

}
.

In words we take K equal to K′

C′ and then enlarge it slightly in order for K log(2N + 1) to be
an integer. We also define the following event

Et :=
{
ξ0s doesn’t escape from J−K log(2N + 1), . . . ,K log(2N + 1)K for any s ≤ t

}
.

Now taking N large enough and t = 1
C′ (1− ε

′) log(2N + 1) we have
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P (ξN (t) = ∅) ≤ P
(
ξ̃ANN (t) = ∅

)
= P

(
ξ̃0N (t) = ∅

)(2N+1)/(2K log(2N+1))

≤
(
P
(
ξ̃0N (t) = ∅ ∩ Et

)
+ P (Ect )

)(2N+1)/(2K log(2N+1))

≤
(
P
(
ξ0(t) = ∅

)
+ P (Ect )

)(2N+1)/(2K log(2N+1))

≤
(
1−

(
1

(2N + 1)1−ε′2
− 2

2N + 1

))(2N+1)/(2K log(2N+1))

.

To obtain the inequality above we used (3.11) and the fact that inside Et the process (ξ̃0N (s))0≤s≤t
evolves just like (ξ0s )0≤s≤t, which allows us to bound P

(
ξ0N (t) = ∅

)
, and we used (3.12) to bound

P (Ect ).

Finally we let

aN =
1

(2N + 1)1−ε′2
− 2

2N + 1
,

and

bN =
2N + 1

2K log(2N + 1)
,

so that the last bound can be written (1− aN )bN . Then

(1− aN )bN = ebN log(1−aN ) ≤ e−bNaN ,

and since aNbN −→
N→∞

∞, it follows that e−bNaN goes to 0 as N goes to ∞.
�

The last step consists in showing that the same convergence holds for the expectation, which
is the object of the following proposition.

Proposition 3.2 Suppose that γ > 1. Then the following convergence holds

E (τN )

log(2N + 1)
−→
N→∞

C,

where C is the same constant as in Proposition 3.1.

Proof: It is well-known that the fact that a sequence of random variables (Xn)n∈N converges
in probability to some random variable X doesn’t necessarily implies that E(Xn) −→

n→∞
E(X).

Nonetheless this implication holds true with the additional assumption that the sequence is uni-
formly integrable (see for example Theorem 5.5.2 in [7] page 259), i.e. if the following holds

lim
M→∞

(
sup
n∈N

E
(
|Xn|1{|Xn|>M}

))
= 0.

It is therefore sufficient to show that
(
τN/ log(2N + 1)

)
N∈N∗ is uniformly integrable, and the

result will follows from Proposition 3.1. For some M > 0 and some N ∈ N∗ it is easy to see that
we have the following
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E
(

τN
log(2N + 1)

1{ τN
log(2N+1)

>M}

)
=

∫ ∞
0

P
(

τN
log(2N + 1)

> max(t,M)

)
dt.

Now using inequality (3.10) and the previously proven fact that C ′ > 0 when γ > 1 we have
the following

∫ ∞
0

P
(

τN
log(2N + 1)

> max(t,M)

)
dt

=

∫ M

0

P
(

τN
log(2N + 1)

> M

)
dt+

∫ ∞
M

P
(

τN
log(2N + 1)

> t

)
dt

≤ (2N + 1)

[∫ M

0

e−C
′ log(2N+1)Mdt+

∫ ∞
M

e−C
′ log(2N+1)tdt

]

= (2N + 1)1−C
′M

[
M +

1

C ′ log(2N + 1)

]
,

where C ′ is the same constant as in the previous proof. Without loss of generality we assume that
M > 1

C′ , so that the bound above is decreasing in N , from what we get

sup
n∈N∗

E
(

τN
log(2N + 1)

1{ τN
log(2N+1)

>M}

)
≤ 31−C

′M

[
M +

1

C ′ log(3)

]
. (3.13)

Finally the right-hand side of inequality (3.13) goes to 0 when M goes to ∞, which ends the
proof. �

4 The complete graph case
Recall that (ζN (t))t≥0 denotes the analog of (ξN (t))t≥0 in the complete graph setting, and that σN
denotes its time of extinction. We adopt the same conventions as in the previous section regarding
the notation, identifying {0, 1}J1,NK with P(J1, NK) and indicating the initial state as a superscript
when it is different from the whole space J1, NK. This convention applies to the time of extinction
as well. Notice that in the complete graph setting it doesn’t really make sense to consider an
infinite process anymore, as any neuron would be activated by a spike infinitely many times in any
time interval for example, moreover the minimal conditions for the existence of an infinitesimal
generator are not satisfied. Luckily we wont need any infinite process in the course of the proof.

We fix some γ > 0. We notice that the time of extinction σN is almost surely finite since
the state where all neurons are quiescent is a trap and since it can always be reached from any
configuration if all neurons leaks one after the other, an event which probability can be bounded
below by (γ/(1+γ))N . Moreover it is clear that P(σN > t) is a continuous and decreasing function
of t, which converges to 0 when t goes to infinity for the reason we just raised. Therefore we can
define βN to be the unique value in R+ such that

P(σN > βN ) = e−1.

We are going to prove that

σN
βN

D−→
N→∞

E (1). (4.14)

The result will then follow as can be seen at the end of the proof. The reason for the introduction
of βN is that it will allow us to prove that the mean of the exponential random variable is indeed
1.
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We first prove that for any s, t > 0 the following holds

lim
N→∞

∣∣∣∣P(σNβN > s+ t

)
− P

(
σN
βN

> s

)
P
(
σN
βN

> t

)∣∣∣∣ = 0. (4.15)

In our complete graph setting there is no spatial dependence between the neurons like in the
lattice setting, so that the law of the time of extinction is impacted by the initial state only through
its cardinal. In particular, for any 1 ≤ k ≤ N and any A ∈P(J1, NK) of size k , σAN has the same
law as σJ1,kK

N . Using the Markov property and this last remark we have

∣∣∣∣P(σNβN > s+ t

)
− P

(
σN
βN

> s

)
P
(
σN
βN

> t

)∣∣∣∣
=

N∑
k=1

∣∣∣∣∣P
(
σ

J1,kK
N

βN
> t

)
− P

(
σN
βN

> t

)∣∣∣∣∣ · P(|ζN (βNs)| = k
)

≤
bN2 c∑
k=1

P (|ζN (βNs)| = k) +

N∑
k=dN2 e

∣∣∣∣∣P
(
σ

J1,kK
N

βN
> t

)
− P

(
σN
βN

> t

)∣∣∣∣∣
We fix ε > 0. In order to prove the desired result we show that we can find N big enough such

that

N∑
k=dN2 e

∣∣∣∣∣P
(
σ

J1,kK
N

βN
> t

)
− P

(
σN
βN

> t

)∣∣∣∣∣ < ε, (4.16)

and

bN2 c∑
k=1

P (|ζN (βNs)| = k) < ε. (4.17)

We start with (4.16), which is the easiest part. For any
⌈
N
2

⌉
≤ k ≤ N we denote by Ek the

event in which every active neuron in the process starting from J1, kK becomes quiescent before any
of them is affected by a spike. Notice that on the complementary event Eck there is a spike affecting
the process at some point, and that the process starting from J1, kK and the process starting from
J1, NK become equal at this point (both will be in the state J1, NK \ {i}, where i is the neuron that
just spiked). It follows that we have

P

(
σ

J1,kK
N

βN
> t

∣∣∣ Eck
)

= P
(
σN
βN

> t
∣∣∣ Eck) .

From this we get that, for any
⌈
N
2

⌉
≤ k ≤ N ,

∣∣∣∣∣P
(
σ

J1,kK
N

βN
> t

)
− P

(
σN
βN

> t

)∣∣∣∣∣
=

∣∣∣∣∣P
(
σ

J1,kK
N

βN
> t

∣∣∣ Ek)− P
(
σN
βN

> t
∣∣∣ Ek)

∣∣∣∣∣ · P(Ek)
≤ P(Ek).
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Now since P(Ek) =
(

γ
1+γ

)k
≤
(

γ
1+γ

)N
2

for any k ≥
⌈
N
2

⌉
we get the following bound

N∑
k=dN2 e

∣∣∣∣∣P
(
σ

J1,kK
N

βN
> t

)
− P

(
σN
βN

> t

)∣∣∣∣∣ ≤ N

2

(
γ

1 + γ

)N
2

,

which goes to zero as N goes to infinity, so that we can find some N1 such that (4.16) is satisfied
for any N ≥ N1.

We now turn to (4.17). We will use a coupling. Let (ζ̃N (t))t≥0 be the process defined as follows.
For t < σN the process is simply equal to ζN (t). Now suppose i ∈ J1, NK is the last neuron active
in (ζN (t))t≥0 before the extinction at σN , then when i leaks in (ζN (t))t≥0, instead of leaking in
(ζ̃N (t))t≥0 it spikes. Then the dynamic of (ζ̃N (t))t≥0 is the same as the dynamic of the process
(ζN (t))t≥0 with the only difference that whenever there is only one neuron remaining it doesn’t
leak, and spike at rate 1 + γ, so that there is no extinction for this stochastic process. The reason
for asking that the last neuron spike at rate 1 + γ instead of simply 1 is that if X and Y are two
independent random variable exponentially distributed with rate 1 and γ respectively, then one
can easily compute that the law of X conditioned on X ≤ Y is an exponential distribution of rate
1 + γ. Now for any 1 ≤ k ≤

⌊
N
2

⌋
, we have

P
(
|ζN (βNs)| = k

)
= P

(
|ζN (βNs)| = k

∣∣ σN > βNs
)
P
(
σN > βNs

)
= P

(
|ζ̃N (βNs)| = k

∣∣ σN > βNs
)
P
(
σN > βNs

)
≤ P

(
|ζ̃N (βNs)| = k

)
,

(4.18)

so that it will be sufficient to prove that for N big enough we have

bN2 c∑
k=1

P
(
|ζ̃N (βNs)| = k

)
< ε. (4.19)

One can easily see that the process (|ζ̃N (t)|)t≥0, that is to say the process counting the number
of particles at any time t, is a Markov jump process taking value in J1, NK, which transition diagram
is given in Figure 1.

We would like to compute an invariant measure for this chain, so that we need to solve the
following equation for µ.

µQ = 0,

where Q is the transition intensities matrix, given by

Q =



−(1 + γ) 0 0 · · · 0 0 1 + γ 0
2γ −2(1 + γ) 0 · · · 0 0 2 0
0 3γ −3(1 + γ) · · · 0 0 3 0
...

...
... · · ·

...
...

...
...

0 0 0 · · · (N − 2)γ −(N − 2)(1 + γ) N − 2 0
0 0 0 · · · 0 (N − 1)γ −(N − 1)γ 0
0 0 0 · · · 0 0 N(1 + γ) −N(1 + γ)


.

This is the same as the following system of linear equations.
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N

N − 1

N − 2

N − 3

2

1

N(1 + γ)

(N − 1)γ

(N − 2)γ

2γ

(N − 2)

(N − 3)

2

1 + γ
...

Figure 1: The transition diagram of the Markov jump process (ζ̃N (t))t≥0.



−(1 + γ)µ1 + 2γµ2 = 0,

−2(1 + γ)µ2 + 3γµ3 = 0,
...

−(N − 2)(1 + γ)µN−2 + (N − 1)γµN−1 = 0,

(1 + γ)µ1 + 2µ2 + 3µ3 + . . .+ (N − 2)µN−2 − (N − 1)γµN−1 +N(1 + γ)µN = 0,

−N(1 + γ)µN = 0.

(4.20)

Solving the system from top to bottom, we get that, for any n ∈ J2, N − 1K

µn =
(1 + γ)n−1

nγn−1
µ1. (4.21)

Moreover µN = 0. Now from (4.21) and from the fact that the elements of µ need to sum up
to 1 we get

µ1 =

(
N−1∑
n=1

(1 + γ)n−1

nγn−1

)−1
.

Disregarding all terms in the sum but the last one we obtain the following bound

µ1 < N

(
1 + γ

γ

)2−N

.

Hence, for any 1 ≤ k ≤
⌊
N
2

⌋
13



µk < N

(
1 + γ

γ

)k+1−N

.

As a consequence,

bN2 c∑
k=1

µk <
N2

2

(
1 + γ

γ

)1−N2
. (4.22)

Let
(
ζ̃µN (t)

)
t≥0 denote the process which initial state is chosen according to the invariant mea-

sure µ. By this we mean that a value k ∈ J1, NK is sorted according to the invariant measure,
and that the process then start from the initial state J1, kK. For any t ≥ 0 we have the following
inequality:

µN−1

bN2 c∑
k=1

P
(∣∣∣ζ̃J1,N−1K

N (t)
∣∣∣ = k

)
≤
bN2 c∑
k=1

P
(
|ζ̃µN (t)| = k

)
. (4.23)

This last inequality gets us closer to our goal but it is still not exactly what we need as the left
hand side involves the process starting from J1, N − 1K while we would like it to start from the full
initial configuration J1, NK. This little problem is solved as follows. Let TN be the time of the first
jump of the process (ζ̃N (t))t≥0, that is to say

TN := inf{t ≥ 0 : |ζ̃N (t)| 6= N}.

Then, for any t ≥ 0 and 1 ≤ k ≤
⌊
N
2

⌋
, the following holds

P
(∣∣∣ζ̃N (t)

∣∣∣ = k
)
= P

(∣∣∣ζ̃J1,N−1K
N

(
(t− TN )+

)∣∣∣ = k
)
, (4.24)

where (t − TN )+ stands for max(0, t − TN ). This last inequality is obtained from Markov
property and the fact that whenever TN > t the events we look at are both of probability 0 for the
k we consider (assuming that N ≥ 3).

Now from (4.22), (4.23) and (4.24), we obtain

bN2 c∑
k=1

P
(∣∣∣ζ̃N (βNs)

∣∣∣ = k
)
=

bN2 c∑
k=1

P
(∣∣∣ζ̃J1,N−1K

N

(
(βNs− TN )+

)∣∣∣ = k
)

≤ 1

µN−1

bN2 c∑
k=1

P
(∣∣∣ζ̃µN ((βNs− TN )+

)∣∣∣ = k
)

≤ 1

µN−1

N2

2

(
1 + γ

γ

)1−N2
.

Moreover from the penultimate line of (4.20) we get

µN−1 >
µ1 + µ2 + µ3 + . . .+ µN−2

γ(N − 1)
.

Furthermore, assuming that N is sufficiently big for γ(N −1) to be greater than one, and using
again the fact that the elements of µ need to sum up to 1, we obtain

µN−1 +
µ1 + µ2 + µ3 + ...+ µN−2

γ(N − 1)
≥ 1

γ(N − 1)
.
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Combining the two previous equations we have

µN−1 ≥
1

2γ(N − 1)
.

Hence, we finally get

bN2 c∑
k=1

P
(
|ζ̃N (βNs)| = k

)
≤ 2γ(N − 1)

N2

2

(
1 + γ

γ

)1−N2

≤ (1 + γ)N3

(
1 + γ

γ

)−N2
.

And the last bound goes to zero as N goes to infinity, so that we can find some N2 such that
(4.17) is satisfied for any N ≥ N2. Finally (4.16) and (4.17) are both satisfied for N ≥ max(N1, N2)
so that the proof of (4.15) is over.

Notice that from (4.15) alone the survival function of the limiting distribution isn’t necessarily
t 7→ e−t, as it could as well be identically equal to 1 or identically equal to 0. Hopefully the
definition of βN rules out the two last cases, so that we indeed have

lim
N→∞

P
(
σN
βN

> t

)
= e−t. (4.25)

It remains to prove that we can replace βN by E (σN ). From the following identity,[
P
(
σN
βN

> s+ t

)
− P

(
σN
βN

> s

)
P
(
σN
βN

> t

)]
=

N∑
k=1

[
P

(
σ

J1,kK
N

βN
> t

)
− P

(
σN
βN

> t

)]
· P
(
|ζN (βNs)| = k

)
,

and from the fact that for any t ≥ 0 and k ∈ J1, NK we have

P

(
σ

J1,kK
N

βN
> t

)
≤ P

(
σN
βN

> t

)
,

it follows that
P
(
σN
βN

> s+ t

)
≤ P

(
σN
βN

> s

)
P
(
σN
βN

> t

)
.

Moreover from the definition of βN we have that for any n ∈ N

P
(
τN
βN

> n

)
≤ e−n.

Therefore, for any t ≥ 0 we have

P
(
τN
βN

> t

)
≤ e−btc.

Using the Dominated Convergence Theorem and (4.25) we finally get
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lim
N→∞

E (τN )

βN
= lim
N→∞

∫ ∞
0

P
(
τN
βN

> t

)
dt

=

∫ ∞
0

lim
N→∞

P
(
τN
βN

> t

)
dt

=

∫ ∞
0

e−tdt

= 1.

And the proof is over.
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