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Abstract

We introduce the problem of hub-laminar decomposition which generalizes
that of computing a shortest path with minimum eccentricity (MESP). Intu-
itively, it consists in decomposing a graph into several paths that collectively
have small eccentricity and meet only at their extremities. We show that a
graph having such a decomposition with long enough paths can be decom-
posed in polynomial time with bounds on the parameters of the decomposi-
tion. Moreover, such a decomposition with few paths allows to compute a
compact representation of distances with additive distortion. The problem is
related to computing an isometric cycle with minimum eccentricity (MEIC).
We also show that having an isometric cycle with small eccentricity is related
to the possibility of embedding the graph into a cycle with low distortion.

Keywords: Graph Decomposition, Graph Clustering, Distance Labeling,
BFS, MESP

1. Introduction

The goal of this paper is to extend the MESP (Minimum Eccentricity
Shortest Path) Problem from Dragan and Leitert (2015) and the related
problem of recognizing k-laminar graphs from Völkel et al. (2016). Both
consist in finding a shortest path (in the sense that no path joining the same
endpoints is shorter) k-dominating a graph (every vertex is at distance at
most k from that path). The k-laminar problem additionally requires that
path to be a diameter (there is no longer shortest path in the graph). Rela-
tionships between the two parameters are derived in Birmelé et al. (2016).

To generalize this problem to more complex underlying structures, we
introduce the problem of decomposing a graph into paths with bounded
eccentricity. More precisely, we introduce the hub-laminar decomposition
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as a set of locally shortest paths that k-dominate the graph and meet only
at their extremities. To formalize this property, we introduce the notion of
hub, that is a ball with fixed radius r centered at a path endpoint. The
laminar associated to a path is the set of nodes k-dominated by the path.
Our definition requires that an edge between two nodes belonging to two
different laminars must also belong to a hub. A laminar joins therefore two
hubs, and laminars meet only inside hubs. The degree of a hub is then the
number of laminars that meet in the hub. The main result of the paper is that
computing such a decomposition becomes tractable when hub centers are far
enough one from another, or equivalently when paths are long enough. We
use two more parameters : the number λ of shortest path and the minimum
length ` of the paths. The MESP problem is equivalent to a hub-laminar
decomposition with one laminar, i.e λ = 1; and the k-laminar problem is
when λ = 1 and ` is the graph diameter.

Such a generalization is naturally interesting in networks where one might
want to identify a set of speedy linear routes that are “highly accessible” with
applications in communication networks, transportation planning and water
resource management. It is also motivated by DNA assembly in biology.
DNA sequencing proceed through the reading of DNA fragments that must be
assembled. When a single DNA strand is sequenced, comparison of fragments
may lead to a graph with “laminar” structure (Völkel et al. (2016)), that is
with large diameter and small shortest path eccentricity. In the context
of metagenomics, several DNA strands are sequenced together and more
complex structures appear (see Figure 1 in Völkel et al. (2016)). Identifying
the laminar structures of such graphs is typically encountered in metagenomic
approaches for evolution questions (see e.g. Saw (2015)). The problem of the
assembly (gluing DNA fragments to reconstruct a DNA strand) is then mixed
with that of binning (sorting DNA strands into groups that represent an
individual genome or genomes from closely related organisms). See Thomas
et al. (2012) for a presentation of assembly and binning problems in the
context of metagenomics. Efficient decomposition of a graph into laminars
could thus enhance the techniques for assembly and binning in this context.

The problem of decomposing a graph into λ laminars that k-dominate
the graph is not well defined as there may be several trade-offs of parameters
λ and k. However, we show that when laminars are long enough compared to
parameters r and k, then all hub-laminar decompositions with these param-
eters are equivalent (same global structure) and have closely located hubs
(except for hubs of degree two that do not affect the global structure). This
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implies for example that the positions of the extremities of the minimum ec-
centricity shortest path (MESP) can be approximated within O(k) distance
when the diameter of a graph is large with respect to the eccentricity k of
the MESP. We define an algorithm that computes a hub-laminar decompo-
sition under certain conditions. As the values of r and k are unknown, the
algorithm is run with different values of parameters R and K, the choice of
those values will be discussed.

From a graph perspective, a very natural generalization of MESP is the
problem of finding a minimum eccentricity isometric cycle (MEIC), that is a
cycle preserving distances that has minimum eccentricity k. Note that such a
cycle can be seen as a hub-laminar decomposition with two laminars and two
hubs with degree two. An important motivation for the MESP problem is its
relationship with embedding a graph into the line with small multiplicative
distortion (Dragan and Leitert (2015)). We similarly show that the MEIC
problem is related to embedding a graph into a circle with low multiplicative
distortion, i.e. such that distances in the circle are within a constant fac-
tor of distances in the graph. Note that circle distortion is bounded by line
distortion as a line segment can isometrically be embedded in a sufficiently
long circle. (However, line distortion can be much larger than circle distor-
tion.) Graph embedding in classical metrics is a well studied problem (Indyk
(2001); Indyk and Matoušek (2004)). Another related subject with abundant
literature is that of compactly representing the distances of a graph (Tho-
rup and Zwick (2005); Peleg (2000)). We show that a decomposition with
few laminars ensures a compact representation of distances with bounded
additive distortion.

Related works:. Finding a MESP is NP-complete but can be approximated
within a constant factor (Dragan and Leitert (2015)). Better trade-off be-
tween computation time and approximation factor for MESP is obtained
in Birmelé et al. (2016). The problem of efficiently representing the distances
in a graph encompasses a vast literature dating from metric embedding (As-
souad (1979)). Approximating embedding with low distortion is introduced
in Badoiu et al. (2005a) where some results are provided in the case of the
line. The case of embedding the metric induced by an unweighted graph is
studied in Badoiu et al. (2005b). Embedding a graph metric into the line
with minimum distortion is NP-complete but fixed parameter tractable with
respect to distortion (Fellows et al. (2013)). Approximate distance oracles,
i.e. compact data-structures for representing an approximation of distances,
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are investigated in Thorup and Zwick (2005). A particular approach intro-
duced by Peleg (2000) resides in assigning a label to each node of a graph
such that the distance between two nodes can be estimated from their labels.
Several results exist about the trade-off between label size and approximation
quality. Exact distance estimation is investigated in Gavoille et al. (2004)
and requires Ω(n) bits labels for general graphs. Approximation with a con-
stant factor and sub-linear label size is derived in Thorup and Zwick (2005).
Some results concern additive approximation such as Gavoille and Ly (2005)
in the case of hyperbolic graphs. A longest isometric cycle can be found in
polynomial time (Lokshtanov (2009)).

2. Definitions

We consider finite, undirected and connected graphs (the connectivity is
always assumed within the paper). The vertex and edge sets of a graph G
are respectively denoted by V (G) and E(G). A path P in G is a sequence of
nodes such that any two consecutive nodes are linked by an edge of G. We
consider only simple paths: a node appears at most once in the sequence.
The first node of the sequence and the last one are called the endpoints of
P . For the simplicity of notations, we also let P denote the set of nodes
appearing in the sequence, or the set of edges between them. A path is a
shortest path if its number of edges is minimal. For any vertices u and v on
P , we denote by Puv the subpath of P having u and v as endpoints.

We let dG(u, v) denote the distance between two vertices, i.e. the length
of a shortest path from u to v. When the graph G is clear from the con-
text, we omit the G subscript and simply write d(u, v). Let B(u, r) =
{v ∈ V (G) | d(u, v) ≤ r} denote the ball of radius r centered at u. Given
a set of vertices U we set B(U, r) = ∪u∈UB(u, r). Given two sets U and
W of vertices, we say that U k-dominates W when every vertex in W is at
distance at most k from some vertex in U , i.e. W ⊆ B(U, k). We say that U
has eccentricity k, denoted ecc(U) = k, when k is the smallest integer such
that B(U, k) = V (G).

2.1. Hub-laminar decomposition

Definition 1 (Hub-laminar decomposition). Consider a connected undi-
rected graph G, two positive integers r and k with k ≤ r, H = {h1, . . . , hq} a
set of vertices of G called hub centers, and P = {P1, . . . , Pp} a set of paths
of G called laminar paths. A ball B(h, r) with h ∈ H is called a hub, and a
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set B(P, k) with P ∈ P is called a laminar. (H,P) is an (r, k)-hub-laminar
decomposition of G if the following conditions are satisfied:

1. each laminar links two hubs centers: the endpoints h, h′ of any P ∈ P
belong to H and for every other hub h′′ ∈ H \ {h, h′},

B(P, k) ∩B(h′′, r + 1) = ∅

2. laminars and hubs dominate G: V (G) =
⋃

h∈H B(h, r) ∪
⋃

P∈P B(P, k)

3. each laminar path is locally a shortest path: any path P ∈ P with
endpoints h and h′ is a shortest path of G[B(P, k)∪B(h, r)∪B(h′, r)]

4. laminars meet at hubs only: for all i 6= j and uv ∈ E(G) such that
u ∈ B(Pi, k) and v ∈ B(Pj, k), there is a hub center h ∈ H such that
Pi and Pj both have h as endpoint and u, v ∈ B(h, r).

The minimal laminar length of a decomposition (H,P), denoted `, is the
minimal length of the paths in P. Its laminar size, denoted λ, is the number
of paths in P.

A hub-laminar decomposition (H,P) with ` ≥ 2r+ 1 forms a partition of
the edges of G in the following sense: each edge is either inside exactly one
hub (possibly touching many laminars ending in that hub), i.e ∃!h ∈ H s.t.
u, v ∈ B(h, r); or, else, inside a unique laminar (possibly touching one hub
extremity of that laminar), i.e, ∃!P ∈ P s.t. u, v ∈ B(P, k).

Figure 1 illustrates this definition and the notion of quotient graph that
we define next. This definition basically defines a decomposition into λ k-
neighborhoods of internally far apart shortest paths. It may seem a bit
involved, but we think it expresses in a minimalist way what we mean by
“internally far apart” with Axiom 4. Axioms 1 and 2 indicate that the graph
is decomposed into laminars which are k-neighborhoods of certain paths and
hubs which are balls centered at the extremities of those paths. Axiom 3
requires a path to be shortest in the induced graph (rather than in G), to
allow laminars with different length between the same two hub centers.

2.2. Quotient graph and equivalence between decompositions

As previously mentioned, the hub-laminar decomposition gives naturally
raise to a skeleton, which can be simplified into a quotient graph.
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Quotient graph of G
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Reduced quotient graph of G
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Figure 1: Illustration of an hub-laminar decomposition with r = 2, k = 1. Every vertex is
at distance r from a hub center (vertices at the center of dashed circles) or at distance k
from a laminar path (paths with bold edges between hub centers).

Definition 2 (quotient graph and reduced quotient). Given a graph G and
an (r, k)-hub-laminar decomposition (H,P) of G, the quotient of this decom-
position is an edge-labeled multigraph with vertex-set H and for each P ∈ P
with endpoints h, h′ there is an edge hh′ whose label is the length of P .

The degree of a hub denotes the degree of the corresponding vertex in the
quotient graph, or equivalently the number of laminar paths its center is the
endpoint of.

The reduced quotient graph of a decomposition (H,P) is the multigraph
obtained from its quotient graph by repeatedly removing degree 2 nodes: for
every vertex u of the quotient incident with exactly two edges uv and uw with
respective labels a and b, u and both edges are removed and a new edge vw is
added with label a+ b. (It is a loop when v = w.)

When the quotient is not a cycle (a case specifically adressed by MEIC,
see Section 3) the reduced quotient is well defined and unique (recall that
graphs are supposed connected).

Definition 3 (equivalence between decompositions). Two hub-laminar de-
composition of a given graph G, possibly with different parameters r, k, are
D-equivalent if they have the same non edge-labeled reduced quotient graph,
up to an isomorphism φ of vertex-sets such that dG(h, φ(h)) ≤ D.
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2.3. Isometric cycle, circle embedding and distance labeling

A cycle C in a graphG is isometric if it preserves distances, i.e. dC(u, v) =
d(u, v) for all u, v ∈ V (C). In other words, for any pair u, v of nodes on the
cycle, one of the two path linking u and v in the cycle is a shortest path
in the graph. Note that an isometric cycle is necessarily an induced cycle.
The MEIC problem consists in finding an isometric cycle with minimum
eccentricity.

It can be shown to be NP-complete following a proof similar to one used
to show the NP-completeness of the MESP problem. Indeed, Völkel et al.
(2016) shows that the MESP problem is NP-complete by exhibiting a family
of graphs such that computing the MESP between two vertices called V1
and V2n is solving an associated 3SAT formula. By using the same family of
graphs and adding an edge between the vertices V1 and V2n we get a reduction
from 3SAT to the MEIC problem.

A circle embedding of a graph G is a mapping f : V (G)→ C where C is
a circle of given length c. It has distortion γ if dG(u, v) ≤ dC(f(u), f(v)) ≤
γdG(u, v) for all u, v in V (G). The circle distortion cd(G) of G is the mini-
mum distortion of a circle embedding of G.

A distance labeling of a graph G consists in assigning a label Lu to each
node u ∈ V (G) together with a distance estimation function f that outputs
an estimation of d(u, v) when given Lu and Lv as input. It has additive
distortion α if d(u, v) ≤ f(Lu, Lv) ≤ d(u, v) + α for all u, v in G.

3. Main results

Obviously, the reduced quotient graph of a graph having a (r, k)-hub-
laminar decomposition follows the following trichotomy: it is either a path,
a cycle or has a node of degree at least three.

We treat separately the three cases. In the first case, the graph has a
shortest path with eccentricity at most max {3k, 2r} and can be recognized
through an approximate MESP algorithm such as Birmelé et al. (2016). (The
bound max {3k, 2r} is a consequence of Lemma 3 given in Section 4.) In
the second case, the graph has an isometric cycle with eccentricity at most
max {3k, 2r}. To recognize such graphs, we propose an approximation MEIC
algorithm:
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Theorem 1. Given a graph containing a k-dominating isometric cycle with
length `, a 6k-dominating isometric cycle can be computed in O(n4.752 log(n))
time. Moreover, the computed cycle is 3k-dominating when ` > 12k + 2.

The proof of this theorem may be found in Section 4.1. We obtain there-
fore an algorithm for approximating circle embedding with low distortion.

Proposition 1. If a graph has circle distortion γ, it is possible to embed it
into a circle with distortion O(γ2) in polynomial time.

This proposition follows from Theorem 1, Proposition 3, and Proposi-
tion 4 in Section 6.1.

Recognizing the general case of decomposition is not a well defined prob-
lem as several decompositions may yield different trade-offs of the parame-
ters. For the same graph both a (r,k)-hublaminar decomposition and a (r’,k’)-
hublaminar decomposition may exist and have completly different shapes.
However, when laminars are long enough, all (r, k)-hub-laminar decomposi-
tions are indeed O(k) equivalent. This can be seen as a consequence of the
following recognition result, our main theorem which proof stretches over
Section 4.

Theorem 2. Given a graph G having a (r, k)-hub-laminar decomposition
(H,P) of minimal laminar length ` ≥ 10r + 52k + 5 and integers K,R such
that K ≥ 3k, R ≥ 4K + 3r and 2R+ 8K < `− 4r − 4k − 4, it is possible to
compute in O(min(n, λ)m) time a (K,R)-hub-laminar decomposition which
is (K + 2r + k)-equivalent to (H,P).

From the graph metric point of view, we obtain then a compact repre-
sentation of distances:

Proposition 2. Given a graph G having an (r, k)-hub-laminar decompo-
sition with laminar size λ, it is possible to compute in polynomial time a
O(max {k, r})-additive distance labeling with O(λ log n) bit labels.

This is proven as Proposition 5 in Section 6.2.

4. Algorithms

4.1. Minimum Eccentricity Isometric Cycle (MEIC) Problem

We propose to approximate the MEIC Problem by computing a longest
isometric cycle, that is an isometric cycle of G with maximum length, since

8



such a cycle O(k)-dominates any k-dominating isometric cycle (Lemma 2).
For any cycle C and any pair of vertices a and b, we denote by Ca,b and Cb,a

the two paths in C linking a and b.

Lemma 1. Let G be a graph with an isometric cycle C k-dominating G. Let
u and v be any two vertices, and u′ and v′ be two vertices on C that are at
distance at most k of respectively u and v.

Every path between u and v 2k-dominates either Cu′,v′ or Cv′,u′.

Proof. Let P be a path between u and v. Suppose that P does not 2k-
dominate some vertex b on the path Cv′,u′ and consider any vertex a in Cu′,v′ .

Without loss of generality, assume that u′ (resp. v′) is in the path Ca,b

(resp. B = Cb,a).
Then u is at distance at most k of Ca,b and v is at distance at most k of

Cb,a. Moreover, as every vertex of G is at distance at most k of one of those
two paths, there exist c and d that are adjacent vertices in P such that c is
at distance at most k of c′ ∈ Ca,b and d at distance at d′ of Cb,a.

As d(c′, d′) ≤ d(c′, c) + d(c, d) + d(d, d′) ≤ 2k + 1 and C is an isometric
cycle, either Cc′,d′ or Cd′,c′ is of length at most 2k+1 and is thus 2k-dominated
by {c, d}. Furthermore b and a are not in the same subpath of C between
c′ and d′, hence either a or b is 2k-dominated by {c, d}. As b cannot be
2k-dominated by P it follows that a is 2k-dominated by {c, d} hence by P .

The previous claim being true for every a in Cu′,v′ , the lemma follows.

Lemma 2. Let G be a graph with an isometric cycle C k-dominating G. Let
D be a longest isometric cycle of G.

Every vertex of C is then at distance at most 4k of D. Furthermore, if
D is of length more than 8k+ 2 then every vertex of C is at distance at most
2k of D.

Proof. Let C = c1, ...cp and assume that D does not 2k-dominate C. Without
loss of generality, we may assume that c1 is at distance greater than 2k + 1
of every vertex of D..

Let ci and cj be vertices at distance less than k of D and such that Cc1,ci−1

and Ccj−1,c1 contain no vertex at distance less than k of D.
Let us note D = d1, ...dq , and define a function f from [|1, q + 1|] to

[|1, p|] such that for every x in [|1, q|], cf(x) is at distance at most k from dx
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and such that f(q+1) = f(1). We may assume, w.l.o.g., that cf(1) = ci, that
is f(1) = i. Note that, for every x ∈ [|1, q|],

i = f(1) ≤ f(bq
2
c) ≤ j

It is then sufficient to show that there exist x in [|1, b q
2
c|] such that :

|f(x)− f(bq
2
c+ x)| ≤ 2k + 1

In other words, that there exists two opposite vertices in D at distance at
most 4k + 1, which implies |D| ≤ 8k + 2.

If f(b q
2

+ 1c)− f(1) ≤ 2k + 1, this result is straightforward. If not, let x
be a value in [|1, d q

2
e|] such that :

f(x) ≤ f(bq
2
c+ x)

f(x+ 1) ≥ f(bq
2
c+ (x+ 1))

Such an x exists as the first equality holds for x equals to 1 and the second
equality holds for x equals to d q

2
e.

Assume that f(b q
2
c+ x)− f(x) > 2k+ 1, as otherwise the result is again

straightforward.

|f(x+ 1)− f(x)| ≤ d(cf(x), dx) + d(dx, dx+1) + d(dx+1, cf(x+1)) ≤ 2k + 1

then implies

f(bq
2
c+ (x+ 1)) ≥ f(bq

2
c+ x)− (2k + 1) > f(x) ≥ f(x+ 1)− (2k + 1)

We get, combining the inequalities, that

f(x+ 1) ≥ f(bq
2
c+ x+ 1) > f(x+ 1)− 2k − 1

and thus
|f(x)− f(bq

2
c+ x)| ≤ 2k + 1
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D is therefore of length at most 8k + 2 if it does not 2k-dominate C,
which proves the second statement of the Lemma.

To prove the first one, it is now sufficient assume that D is of length
p ≤ 8k + 2 and prove it 4k-dominates C. To do so, consider two opposite
vertices u and v on D, that is at distance at least bp

2
c.

Let ci (resp. cj) in C at distance less than k of u (resp. v). Then,

d(ci, cj) ≥ d(u, v)− d(ci, u)− d(v, cj) ≥ b
p

2
c − 2k

As D is a longest isometric cycle and thus |C| ≤ p,

|Ccj ,ci | ≤ |C| − d(ci, cj) ≤ d
p

2
e+ 2k ≤ 6k + 1

Similarly, |Cci,cj | ≤ 6k + 1. Hence, for every cl in C, d(ci, cl) ≤ 3k or
d(cj, cl) ≤ 3k.

As u (resp. v) is at distance k of ci (resp. cj), d(u, cl) ≤ d(u, ci)+d(ci, cl) ≤
4k or d(v, cl) ≤ 4k

Consequently, a longest isometric cycle in a graph is a 5-approximation
for the MEIC problem, and a 3-approximation when the graph has a large
enough diameter. As shown in Lokshtanov (2009), a longest isometric cycle
can be computed in O(n4.752 log(n)) time. Theorem 1 is thus a direct conse-
quence of this and Lemma 2. The bound for the 3-approximation when the
graph has a large enough diameter is tight, for the 5-approximation, we have
found an instance that shows that it is at best a 4-approximation.

4.2. General case outline

The previous subsection corresponds to the case where the quotient graph
is a cycle. The case where it is a path is solved by Birmelé et al. (2016). These
two cases cover all situations where the quotien graph has maximum degree at
most 2. Consider now a graph G having a (r, k)-hub-laminar decomposition
(H,P) of minimal laminar length ` and having at least one hub of degree at
least 3. Notice that in the sequel, we always refer to H, P or the parameters
r, k, λ and ` but of course we do not know them and they are not part of the
input.
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We first present the algorithm and state the theoretical results related
to each step. Technical proofs and intermediate lemmas are postponed to
Section 5 to preserve readability.

In all that section, the assumptions of Theorem 2 are considered true: we
are given input parameters K and R satisfying K ≥ 3k, R ≥ 4K + 3r and
` > 2R + 8K + 4r + 4k + 4.

The underlying idea of the algorithm is to use BFS (Breadth-first search)
to compute shortest paths and their K-neighborhoods, in order to use the
following central lemma from Birmelé et al. (2016). It states that any path
going through a laminar 3k-dominates the central part of it, that is all vertices
not to far from the two corresponding hub centers.

Lemma 3 (Path local domination). Consider a laminar path P ∈ P. Let Q
be a path from u to v contained in B(P, k). Let u′ ∈ P and v′ ∈ P such that
d(u, u′) ≤ k and d(v, v′) ≤ k.

Then every vertex of Pu′v′ is at distance at most 2k from Q. Furthermore,
every vertex of B(Pu′v′ , k) is at distance at most 3k from Q.

By that lemma, the choice K ≥ 3k will ensure the domination of every
laminar traversed by well-chosen shortest paths. However, a set of vertices
approximating the set H has first to be chosen according to the following
definition.

Definition 4. A vertex a dominates a hub-center h ∈ H if d(a, h) ≤ K +
2r + k.

A vertex set A is H-close if every vertex of A dominates a vertex of H,
no vertex of H being dominated by two vertices of A.

A vertex set A is H-dominating if it is H-close and every vertex of H
defining a hub of degree different from 2 is dominated by a vertex of A.

The first part of the algorithm, called FindHubs and detailed in Sec-
tion 4.4, determines a H-dominating set A containing the hub-centers of the
returned decomposition.

Note that ` > 2(K + 2r + k) implies that no vertex of A can dominate
two different vertices of H. Therefore, an H-dominating set A is an approxi-
mation of H in the sense that A contains exactly one vertex dominating the
center of every hub of degree 1, 3 or more, even if it may contain or not a
vertex dominating the center of every hub of degree 2. The special status of
hubs of degree 2 is due to the fact that they may be integrally included in
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the K-neighborhood of shortest paths if K > r, so that they may be difficult
to detect. Although the returned quotient graph may differ from the original
quotient graph in such cases, the reduced quotient graphs will coincide.

The former point raises a particular difficulty in configurations corre-
sponding to a cycle in the quotient graph of (H,P) containing only one hub
of degree at least 3, like the two laminars on the right of Figure 2. This
is called a Problematic Configuration: there exists at least a degree 2 hub
h ∈ H somewhere in that cycle, but one might not be able to detect it. In
that case, a vertex b situated in the middle of the cycle is added to a set B
which will be returned together with A by FindHubs.

Figure 2: The decomposition (H,P) is unknown. A problematic configuration is on the
right of the graph : a laminar cycle with only one hub having degree different from 2.

The laminars are determined in a second step by the FindLaminars pro-
cedure, which basically links the hub-centers of the previous step by shortest
paths. One technical point has to be taken into account: a hub of degree 2
may have been missed by FindHubs and can be discovered at that step. In
that case, the set of hubs A is adapted by adding the new discovered hub,
and if needed, the corresponding vertex is deleted from B.

Figure 2, 3 and 4 give a summary of the two steps by showing a possible
outcome of the FindHubs and FindLaminars on an example.
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a1

a2 a3 a4

a5

b1

Figure 3: During an execution of the function FirstHub, a set A of hub centers is computed
such that every ball B(h, r) for h ∈ H having degree different from 2 is covered by B(ai, R)
for some ai ∈ A. Tentative hubs such as b1 may be added in the middle of problematic
configurations and returned in a set B.

4.3. Topology of G \B(A,R)

Both procedures FindHubs and FindLaminars will rely on BFS trees
covering connected components of G \ B(A,R), A beeing an H-close set.
Before detailing those procedures, the following lemma explicits the possible
topologies of such components with respect to the decomposition (H,P).
Figures 5, 6 and 7 illustrate all possibilities.

Lemma 4.
Let A be an H-close set and g a connected component of G \B(A,R). g

has one of the mutually exclusive following topologies:

Type a) g contains no hub and touches only one set B(a,R), a ∈ A;

Type b) g contains a hub of degree at least three;

Type c): there exist a sequence of hubs and laminars H0, L1, H1,. . . ,Lz,Hz,
z ≥ 1, such that the center h0 of H0 is dominated by some node a1 ∈ A,
Hz is of degree 1, all other hubs (if z ≥ 2) are of degree two, and g is
consisted exactly of the union of the vertices in these hubs and laminars
except those in B(a1, R).
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a1

a2 a3 a4

a5

a6

Figure 4: When computing FindLaminars, tentative hubs in set B might be modified:
in this exemple, b1 becomes a6. Some thin hubs of degree 2 are not detected and belong
to K-laminars, as illustrated by the top-left hub for instance. In any case, the reduced
quotient graph stays the same even if some hubs of degree 2 are missed.

Type d): there exist a sequence of hubs and laminars H0, L1, H1,. . . ,Lz,Hz,
z ≥ 1 and Hz 6= H0, such that the centers of H0 and Hz are dominated,
all other hubs (if z ≥ 2) are of degree two, and g is composed of all the
vertices in those sets except those in B(A,R);

Type e) (problematic configuration): there exist a sequence of hubs and
laminars H0, L1, H1,. . . ,Lz,H0, z ≥ 1, such that the center of H0 is
dominated by some node a1 ∈ A, all other hubs are of degree two, and
g is composed of all the vertices in those sets except those in B(a1, R).

Moreover, every vertex neighboring B(a,R), a ∈ A, belongs to a laminar
incident to B(h, r), h ∈ H being the hub center dominated by a.

4.4. Finding hubs

The hub detection algorithm FindHubs relies on a vertex-coloring pro-
cedure of G, which is initially completly uncolored. The vertices are then
colored gradually by the procedure NextHub, and some of them added to
sets A or B in a way such that the following Invariants are satisfied at each
step:

15



a

Figure 5: Illustration of a connected component of Type a). The laminar path is in bold,
k = 2, R = 3 and the squared vertices are in B(a,R) colored in light grey. The connected
component of Type a), in dark grey, contains 3 vertices. All 3 are at distance more than
R of a and at distance at most k of the laminar path. However B(a,R) disconnects them
from the rest of the laminar.

a1
a2

a3

a1

Figure 6: Illustration of a connected component of Type b) (on the left) and a component
of Type c) (on the right). Vertices a1, a2 and a3 correspond to vertices of A already
detected. B(A,R) is colored in light grey. The connected components are in dark grey.

Invariant 1: All balls B(a,R) for a ∈ A∪B are disjoint and for each a ∈ A,
all nodes in B(a,R) are colored with a color specific to a.

Invariant 2: Some connected components of G \ B(A,R) may be colored
with a specific color lam (as laminar).

Invariant 3: The set U of uncolored vertices is a union of connected com-
ponents in G \B(A,R).

Invariant 4: A is H-close.

Invariant 5: Every colored h ∈ H defining a hub of degree 1 or at least 3
is dominated by a vertex a ∈ A.

To start, FindHubs needs a first vertex a ∈ A dominating some h ∈ H.
Coloring the vertices of B(a,R) then ensures that the five Invariants are sat-
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a1 a2 a1

Figure 7: Illustration of a connected component of Type d) (on the left) and a component
of Type e) (on the right). Vertices a1, a2 and a3 correspond to vertices of A already
detected. B(A,R) is colored in light grey. The connected components are in dark grey.

isfied. FindHubs then consists in applying as long as possible the NextHub
procedure, introduced in Section 4.4.2, which colors a non-empty set of un-
colored vertices by preserving the five Invariants. NextHub is repeated until
no vertex of A has an uncolored vertex at distance R+ 1. Invariant 1 and 3
then ensure that the whole graph is colored, Invariants 4 and 5 then implying
that A is H-dominating.

The initialisation of the procedure is postponed to section 4.4.3.
Nexthub relies on several BFSs which are run from the border of B(A,R)

in the connected components of G \ B(A,R). As shown later on, Type a)
and Type e) components are then characterized by the fact that the furthest
node in the BFS is close to the ball B(a,R) it started from. Therefore, the
uncolored nodes close to a need to be marked to test wether we stop near a
or not (as we shall see near a means in B(a,R + 2K + 1)). The marks are
removed after the BFS is done.

4.4.1. The StopBFS function

Provided a marked and uncolored vertex d and a color c, the StopBFS
procedure consists in running an usual Breadth-first search starting at vertex
d, with the following additional rules:

• only uncolored or marked vertices are put in the BFS queue.

• if a vertex is visited (i.e. extracted from BFS queue) and has a colored
neighbor whose color is not c then this (uncolored) vertex is noted f
and the rest of the BFS is computed.

• if the BFS queue becomes empty without encountering the previous
case, let f be its deepest leaf such that there exists an unmarked vertex
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on the BFS path from d to f ; if such a leaf doesn’t exist, i.e. only
marked vertices were traversed, let f = d.

• the function StopBFS(d, c) returns the BFS tree T as well as the path
Q from d to f in that tree.

StopBFS will be applied at the first step of NextHub. Note that Invariant
3 then implies that the explored vertices correspond to a connected compo-
nent of G \ B(A,R), or to a subgraph of such a component if another color
is encountered.

4.4.2. Finding a new hub: NextHub

The procedure NextHub can now be described. It relies on the following
result, which allows to detect hubs, that is to select vertices in A which are
close to vertices in H.

Lemma 5 (Hub trigger). Let Q be a shortest path returned by StopBFS,
or any shortest path in G. Denote by r3K(Q) the subpath of Q obtained by
removing the 3K first and 3K last vertices along that path.

Suppose there exist a vertex u ∈ r3K(Q) and an edge vw ∈ E(G) such
that d(u, v) = K and d(Q,w) = K + 1. Then there exist a hub center h ∈ H
dominated by u.

Conversely, suppose that the set of vertices explored by StopBFS contains
B(h, `

2
− R) for some h ∈ H defining a hub of degree at least 3, the vertices

d and f of StopBFS beeing outside this set. Suppose moreover that the path
Q output by the StopBFS intersects B(h, r). Then there exist a vertex u ∈
r3K(Q) and an edge vw ∈ E(G) such that d(u, v) = K and d(Q,w) = K + 1.

The following lemma lists the behaviors of the result of StopBFS depend-
ing on the explored subgraph, leading thus to an algorithm based on the
result of the StopBFS procedure.

Lemma 6. Suppose that Invariants 1 to 5 are fulfilled and consider a ∈ A.
Assume that the set of marked vertices is B(a,R+2K+1) and that stopBFS
is run from a vertex d such that d(a, d) = R + 1. Let g be the connected
component of G \B(A,R) explored (partially) by StopBFS, and denote by Q
and f the path returned by stopBFS and its last vertex.

Depending on the topology type of g as defined in Lemma 4, the following
holds:
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h

u

v

w

Q

Figure 8: Illustration of Lemma 5

Type a): all explored vertices are marked, and thus f = d;

Type b): there exist a triple of vertices satisfying the conditions of Lemma 5;

Type c): f and its neighborhood are unmarked and uncolored. In that case,
f dominates the center of Hz;

Type d): f is unmarked and neighbors a colored vertex of a ball B(a′, R)
centered at a vertex a′ ∈ A \ {a} that dominates the center of Hz;

Type e): f is marked and different from d.

The NextHub procedure, whose pseudo-code is given by Algorithm 1,
consists in determining which of the five cases is relevant by testing the
presence of a triple satisfying Lemma 5, or looking at the status of f . Note
that a triple satisfying Lemma 5 may also be found in components of Type
c), d) or e), corresponding then to the detection of a hub of degree 2.

In each case, either a vertex dominating some uncolored h ∈ H can be
added to A, or a whole component of G \B(A,R) containing no hub or only
hubs of degree two can be colored. In the last case, corresponding to the
problematic configuration, a temporary hub b ∈ B is arbitrarily added in the
middle of Q.

Assuming a correct initialisation, the following lemma implies the validity
of FindHubs.
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1 NextHub
Input: A graph G with possibly colored vertices, integers R and

K, hub-center sets A and B (B is possibly empty), and a
vertex a ∈ A

Output: Updated sets A, B and vertex coloring
2 Mark every uncolored vertex in B(a,R + 2K + 1)
3 Choose a marked vertex d at distance R + 1 from a
4 Let (T,Q) = stopBFS(d, col(s)) and f be the last vertex of Q
5 If f = d then

/* Case a) */

6 Color all vertices of T with color lam

7 else if ∃w, u s.t. w is uncolored and u∈r3K(Q) and d(w, u)=K+1
and d(w,Q)=K+1 then
/* A triple satisfying Lemma 5 is found. */

8 Add to A the first vertex u of r3K(Q) satisfying the above
condition.

9 Color every vertex in B(u,R) with a new color col(u)

10 else if f is a marked vertex then
/* Case e) */

11 Add to B the vertex b in the middle of Q
12 Color all vertices of T with color lam

13 else if f is an uncolored vertex and has a colored neighbor then
/* Case d) */

14 Color all vertices of T with color lam

15 else
/* Case c) */

16 Add f to A
17 Color every vertex in B(f,R) with a new color col(f)

18 Unmark every marked vertex

Algorithm 1: Pseudo-code of the NextHub procedure

Lemma 7. If NextHub is run on a colored graph G and a set A such that the
Invariants 1 to 5 are verified, the modified graph and set obtained as outputs
also satisfy them.

Proof. Invariants 1 and 2 are straightforward given the algorithm.
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Invariant 3 is conserved as in every configuration, either a vertex is added
to A and its R-neighborhood is colored, or a whole connected component of
G \B(A,R) is colored with color lam.

The conservation of Invariants 4 and 5 is a consequence of Lemma 5 if a
triple satisfying it is found and of Lemma 6 in case c). The three other cases
do not change the set A nor color hubs of degree different from 2.

4.4.3. Initialisation

In order to use the NextHub procedure while conserving the Invariants, a
first vertex has to be added to A. This is done by using NextHub as follows.

A first BFS is performed starting at a vertex s chosen arbitrarily. Let x
be a furthest vertex from s and let Q be the shortest path between s and x
computed by the BFS. If Q contains a triplet of vertices (u, v, w) as defined
by Lemma 5 then u is chosen as the first hub. Otherwise, let m be a vertex
in the middle of Q and let d be the vertex of Q at distance R + 1 of m and
the closest to s.

The NextHub procedure is then called with A = {m}, the vertices of
B(m,R) are colored and the stopBFS starts on d. The resulting procedure
FirstHub for finding a first hub center is detailed as Algorithm 2. A vertex
u dominating a vertex of H is then detected as shown with the following
lemma.

Lemma 8. Assume that (H,P ) contains at least one hub of degree at least
3. The procedure FirstHub described above returns a vertex u corresponding
to the configuration of Lemma 5.

4.5. Finding laminars

Given the H-dominating set A and the set B pointing to the problem-
atic configurations, the procedure FindLaminars constructs shortest paths
between vertices of A, which will be the laminar paths of the returned de-
composition.

Again, this is done by applying repeteadly BFS, but rooted on vertices
of A. For each constructed path Q linking two hub centers a and a′, the
vertices of the corresponding constructed laminar B(Q,K) are removed from
the graph, except those of the hubs B(a,R) and B(a′, R) which are declared
undeletable. The process ends when the graph consists in disconnected hubs
only.
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1 FirstHub
Input: A graph G, integers R and K
Output: A vertex a

2 Let s be any vertex
3 Let (T,Q) = BFS(s) and x the last vertex of Q
4 If ∃w, a such that a∈ r3K(Q), d(w, a)=K+1 and d(w,Q)=K+1

then
5 Return a

6 else
7 Let m be a vertex in the middle of Q

8 Let d be the vertex of Q at distance |Q|
2
−R− 1 of s

9 Let A be an empty set
10 Compute NextHub(G,R,K,A, ∅, d)
11 Return a the only vertex in A

Algorithm 2: Pseudocode of function FirstHub

Two technical difficulties however have to be taken into account. The first
one is the possible discovery of hubs of degree 2 which had been missed by
FindHubs; it can easily be handled by updating A. The second one resides
in problematic configurations as a laminar has to link two distinct hubs. In
order to solve it, vertices of B are considered first. More precisely, for every
b ∈ B, there exist a ∈ A such that, for any BFS traversal starting from b,
the first encountered element of A ∪ B is a. Thus, two BFS from b to a are
run, following the Type e) component in opposite directions. Either a hub
of degree 2 is discovered, A is updated and b can be discarded, or the two
obtained paths K-dominate all vertices of the Type e) component and b is
transfered to A.

The pseudo-code of FindLaminars is given in Algorithm 3.
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1 FindLaminars
Input: A graph G, integers R and K
Output: a hub-laminar decomposition (A,Q)

2 (A,B) = FindHubs(G,R,K)
3 Q = ∅
4 Mark all vertices as deletable
5 For each a ∈ A do
6 Mark the vertices in B(a,R) as undeletable

7 For each b ∈ B do
8 Run a BFS starting at b and stopping on the first vertex a ∈ A
9 Let Q1 be the path from b to a computed by this BFS

10 Run a BFS starting at b, not using vertices of
B(Q1,K) \ (B(b, R) ∪B(a,R)) and stopping in a

11 Let Q2 be the path from b to a computed by this BFS
12 Compute g, the union of B(a,R) and of the connected component

of G \B(a,R) containing b
13 Color in g the vertices of B(a,R), B(b, R), B(Q1,K), B(Q2,K)
14 If ∃ an uncolored vertex c in g then
15 Add c to A
16 Mark the vertices in B(c,R) as undeletable

17 else
18 Add b to A
19 Mark the vertices in B(b, R) as undeletable
20 Delete from G the deletable vertices of B(Q1,K) ∪B(Q2,K)
21 Add Q1 and Q2 to Q

22 While there exists a ∈ A such that B(a,R + 1) 6= B(a,R) do
23 Run a BFS starting at a and stopping on the first vertex a′ ∈ A,

a′ 6= a
24 Let Q be the path from a to a′ computed by this BFS
25 If ∃w, u s.t. h ∈ r3K(Q), d(w, u)=K+1, d(w,Q)=K+1 then
26 Add to A the first vertex h of Q satisfying the above
27 Mark the vertices in B(h,R) as undeletable

28 else
29 Add to Q the path Q from a to a′ computed by this BFS
30 Delete from G the deletable vertices from B(Q,K)

Algorithm 3: Pseudo-code of the FindLaminars procedure
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Lemma 9. Suppose that FindLaminars is run, with the sets A and B
returned by FindHubs as its input. Let us consider the evolution of the
deletable vertices during the algorithm. The following holds:

1. After each iteration of the For or the While loop, the set of deletable
vertices is a union of components of G \B(A,R) of Type a), d) or e);

2. Every deletable component of Type a) is included in a laminar which is
also the first or the last one of a component of Type d) or e);

3. Every iteration of the For loop deleting a vertex deletes or marks as
undeletable the vertices of exactly one component of Type e) and all the
components of Type a) located in its first and last laminar;

4. Every iteration of the While loop deleting a vertex deletes or marks as
undeletable exactly one component of Type d) and all the components
of Type a) located in its first and last laminar;

Consequently, FindLaminars terminates with every vertex of G deleted
or marked as undeletable.

This result, which proof is postponed to Section 5, is the last one needed
to prove the validity of the algorithm.

Lemma 10. The output (A,Q) of FindLaminars is a (R,K) hub-laminar
decomposition.

Proof. We shall prove successively all items of the definition of a hub-laminar
decomposition (Definition 1).

1. Each laminar links two hubs centers. The endpoints a, a′ of any Q ∈
Q belong to A and for every other hub a′′ ∈ A \ {a, a′}, B(Q,K) ∩
B(a′′, R + 1) = ∅: The first part of the claim is straightforward. The
second part is a consequence of the last claim of Lemma 4. Indeed,
B(Q,K)∩B(a′′, R+1) 6= ∅ would imply that the connected component
covered by B(Q,K) exhibited three laminars incident to dominated
hubs, and thus contained a non-dominated hub of degree at least 3,
which is impossible by the first item of Lemma 9.

2. Laminars and hubs dominate G: V (G) =
⋃

a∈AB(a,R)∪
⋃

Q∈QB(Q,K):
This is a direct result of the last claim of Lemma 9.

3. Each laminar path is locally a shortest path. Any path Q ∈ Q with
endpoints a and a′ is a shortest path of the graph G[B(Q,K)∪B(a,R)∪
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B(a′, R)]: As it is drawn using a BFS, every path Q ∈ Q of endpoints
a and a′ is a shortest path of the remaining graph when computing Q.
This graph contains B(Q,K) ∪B(a,R) ∪B(a′, R).

4. Laminars meet at hubs only. For all i 6= j and uv ∈ E(G) such that
u ∈ B(Qi, K) and v ∈ B(Qj, K), there is a hub center a ∈ A such that
Qi and Qj both have a as endpoint and u, v ∈ B(a,R):
This is a consequence of the two last items in the enumeration of
Lemma 9, which claim that a connected component of deletable vertices
cannot stay partially deletable after an iteration of either loop.
Indeed, suppose that there exist such vertices u and v that are not
in some B(a,R), a ∈ A, and suppose w.l.o.g. that Qi is added to Q
before Qj. Consider the iteration on which Qi is built. The connected
component of undeletable vertices containing u and v either remains
deletable, which contradicts u ∈ B(Qi, K), or all non undeletable ver-
tices are deleted, which contradicts v /∈ B(Qi, K).

The (K + 2r + k)-equivalence is a consequence of the fact that A is H-
dominating, which allows to build the bijection φ between hub centers with
hub degree different from 2. Notice moreover that the decomposition (A,Q)
has λ hubs at most since it has no more degree 2 hubs than (H,P). Our
algorithm indeed adds degree 2 hubs in two cases only. First, when the
conditions of Lemma 5 are met, and the vertex added to A then dominates
a hub of H. Second, when a vertex of B is transfered to A, which happens
only when the hub(s) of degree 2 in a problematic configuration have been
missed.

Regarding the time complexity, apart from Case (a), each iteration of the
while loop in FindHubs corresponds to finding a hub or a laminar. There are
thus O(|A| + |Q|)) such iterations, and their overall cost is O(min(λ, n)m).
In the iterations corresponding to Case (a), all vertices visited by StopBFS
are colored: the overall cost of such iterations is thus O(m). Similarly,
FindLaminars consists in λ iterations costing O(m) each.

The code is available on github at <https://github.com/LeoPlanche/

hublam>.
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5. Validity proofs

5.1. Proof of Lemma 3

Proof. The second assertion is straightforward given the first one.
For the sake of contradiction, let us thus assume that there exist a vertex

w on Pu′v′ that is not at distance 2k of Q. For every x ∈ Quv, let x′ be a
vertex on P such that d(x, x′) ≤ k.

As u′, w and v′ are in that order on P , there exist x1 which is the closest
to v on Quv such that x′1, w and v′ are in that order. The next vertex x2 on
Quv then verifies that x′1, w and x′2 are also on that order on P .

But w is at distance greater than 2k of x1 and x2, so that Px′1x
′
2

is of length
at least 2k+ 2. As d(x′1, x

′
2) ≤ d(x′1, x1) + d(x1, x2) + d(x2, x

′
2) ≤ 2k+ 1, this

contradicts the fact that P is a shortest path.

5.2. Two technical lemmas

Two technical lemmas are needed in order to detail the proofs of the
former section’s unproven lemmas. The first one states that a shortest path
that enters a laminar but does not traverse it can not enter it deeply, as
illustrated in Figure 9.

Lemma 11. Consider a shortest path Q in the graph induced by B(P, k) with
P ∈ P and three successive nodes a,m, b on Q with a′,m′, b′ on P such that
dG(a, a′) ≤ k, dG(m,m′) ≤ k, dG(b, b′) ≤ k.

If a′ is between b′ and m′ on P , then dG(a,m) ≤ 3k.

Proof.

d(m, a) = d(a, b)− d(m, b)

≤ d(a′, b′) + 2k − d(m, b)

≤ d(m′, b′)− d(m′, a′) + 2k − d(m, b)

As d(m′, b′) ≤ d(m, b) + 2k and d(m′, a′) ≥ d(m, a)− 2k, it follows

d(m, a) ≤ 6k − d(m, a)

d(m, a) ≤ 3k

26



h
b′ a′ m′

b a mQ

P

Figure 9: Proof of Lemma 11

The second one states that if some hub B(h, r) is a separator in the con-
nected component covered by StopBFS, the vertex f returned by StopBFS
cannot be nearby h.

Lemma 12. Consider a connected subgraph g of G, a hub B(h, r) included
in g, a vertex d ∈ g \ B(h, r), and a laminar L incident to B(h, r). Let
v0 = h, v1, . . . , vq, q > 2r + 1, be a subpath of the laminar path of L that
belongs to g and suppose that B(h, r) separates vq from d in g. Finally, denote
by f the furthest vertex from d in g. Then we have f /∈ L∩B(h, q− 2r− 1).

Proof. Denote by S the shortest path in g from d to vq. As B(h, r) separates
d from vq, S has to hit B(h, r) in some vertex u. Then,

dg(d, vq) = dg(d, u)+dg(u, vq) ≥ dg(d, u)+dg(hi, vq)−dg(hi, u) ≥ dg(d, u)+q−r

Moreover, for every w ∈ B(hi, q − 2r − 1),

dg(d, w) ≤ dg(d, u)+dg(u, hi)+dg(hi, w) ≤ dg(d, u)+r+q−2r−1 < dg(d, vq)

Thus, f /∈ L ∩B(h, q − 2r − 1).

5.3. Proof of Lemma 4

Proof. As r + (K + 2r + k) < R, we have B(h, r) ⊂ B(a,R) when a ∈ A
dominates h ∈ H. Conversely, a vertex of B(a,R) cannot hit two different
B(h, r) as it would imply ` ≤ 2(R+r). Consequently, as A is H-close, B(h, r)
does not hit B(A,R) when h /∈ B(A,R). Every hub is thus either completely
or not at all included in B(A,R).

Consider first a connected component of G\B(a,R) that does not contain
a hub. It is therefore included in a laminar. Either it neighbors only one set
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Figure 10: Notations used in the proof of Lemma 12

B(a,R), corresponding to Type a), or it links some B(a,R) and B(a′, R),
corresponding to Type d) with z = 1.

Consider now the quotient graph where vertices are colored in red if the
corresponding hub is included in B(A,R), in black if not. A connected com-
ponent of G\B(A,R) containing a hub corresponds to a maximal connected
subgraph of black vertices. If such a subgraph contains a vertex of degree
3 in the quotient graph, Type b) is met. Otherwise, it corresponds to a
path in the quotient graph. Either only one endpoint of that path has a red
neighbour, and Type c) is met, or both endpoints have a red neighbour. If
the two red vertices are different, this corresponds to Type d) with z ≥ 2. If
the same red vertex neighbors the two endpoints, Type e) is met.

Finally, a laminar L which links two non-dominated hubs is disconnected
from the rest of the graph by the two hubs it links, so that no ball B(a,R)
can hit or neighbor it, implying the last claim of the lemma.

5.4. Proof of Lemma 5

Suppose that there exist a triple (u, v, w) of vertices satisfying the condi-
tions and, for the sake of contradiction, suppose no hub h exists at distance
at most K + 2r + k of u. u then belongs to some laminar B(P, k), P ∈ P
linking two hubs h1 and h2 of H.

Let us first assume that w does not belong to B(P, k) or belongs to one of
the hubs B(h1, r) or B(h2, r). The shortest path from u to v then contains a
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vertex x of B(h1, r) or B(h2, r), so that d(u, h1) ≤ d(u, x) + d(x, h1) ≤ K + r
or d(u, h2) ≤ K + r. u therefore covers a vertex of H.

Assume now that w ∈ B(P, k) \ (B(h1, r)∪B(h2, r)). Let a and b be the
two vertices such that Qab ⊂ B(P, k), u ∈ Qab and Qab is maximal for those
two conditions. Then a (resp. b) is an endpoint of Q or is a vertex of B(h1, r)
or B(h2, r). In any case, d(a, u) ≥ K + r + k and d(b, u) ≥ K + r + k.

Let b′, a′, w′ and u′ be vertices of P at respective distance at most k from
b, a, w and u.

Lemma 11 and the fact that a and b are at distance greater than 3k of
u imply that u′ is between a′ and b′ on Q. Moreover, w′ cannot be between
a′ and b′ as Lemma 3 would then imply that w is at distance at most 3k of
Q′a,b. We may therefore assume w.l.o.g. that h1, w

′, a′ and u′ are on P in
that order.

Then d(u, a) ≤ d(u′, a′)+2k ≤ d(u′, w′)+2k ≤ d(u,w)+4k = K+4k+1.
As u ∈ r3K(Q), a is not an endpoint of Q, and we may thus assume that
a ∈ B(h1, r). Then d(h1, w

′) ≤ d(h1, a
′)− 1 ≤ r + k − 1 and thus d(u, h1) ≤

d(u,w) + d(w,w′) + d(w′, h1) ≤ K + 1 + k+ r+ k− 1 ≤ K + 2r+ k. Thus u
dominates h1.

Conversely, consider h ∈ H defining a hub of degree at least 3 and such
that StopBFS is rooted outside B(h, `

2
−R) but explores all this set. Suppose

moreover that the path Q output by StopBFS meets the hub B(h, r), d and
f beeing outside B(h, `

2
−R).

Consider three paths Pi,Pk,Pl of P with h as an endpoint and vertices
x′i,x

′
j,x
′
l on those paths, each at distance r +K + 3k + 2 < `

2
−R from h.

Assume first that those three vertices are at distance at most K of vertices
xi, xj, xl in Q respectively. None of the last three vertices belongs to the
hub B(h, r) as d(h, xi) ≥ d(h, x′i)− d(x′i, xi) ≥ r+ 3k+ 2. Moreover, we may
assume w.l.o.g that xj, xi and xl appear in that order in Q. There exists
therefore a maximal subpath Qab of Q that is part of B(Pi, k) \ B(h, r) and
that contains xi.

Let a′ and b′ be vertices of Pi such that d(a, a′) ≤ k and d(b, b′) ≤ k, as
illustrated in Figure 11. Then d(h, a′) ≤ d(h, a) +k ≤ r+k+ 1 and similarly
for b′. As d(h, x′i) > r + k + 1, Lemma 11 applies to a, xi and b and implies
that d(a, xi) ≤ 3k or d(b, xi) ≤ 3k. In both cases, as d(h, a) = d(h, b) = r+ 1
and d(xi, x

′
i) ≤ K, we get d(h, x′i) ≤ r+K+ 3k+ 1, which is a contradiction.
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Figure 11: Proof of Lemma 5

One of the three vertices x′i, x
′
j or x′k is therefore at distance more than

K from Q, for instance x′i. When following Pi from h to x′i, let v be the last
vertex at distance K from Q, w be the following vertex of Pi and u be a
vertex of Q such that d(u, v) = K. Then d(Q,w) = K + 1.

If u does not belong to the laminar B(Pi, k), the shortest path from u
to v has to meet the hub B(h, r) and d(u, v) ≤ K + r. If u ∈ B(Pi, k),
let u′ be a vertex of Pi that is at distance at most k from u. By definition
of v, u′ is between h and v, and d(u′, v) ≥ K − k as d(u, v) = K. Thus,
d(h, u′) ≤ d(h, v)−K+k ≤ d(h, x′i)−K+k ≤ r+4k+2 and d(h, u) ≤ r+5k+2.
In any case, d(h, u) ≤ r +K + 2k + 2.

Consequently, d(u, f) ≥ d(h, f)− d(h, u) ≥ `
2
−R− r−K − 2k− 2 > 3K

and similarly d(u, d) ≥ 3K. u is thus a vertex of r3K(Q).

5.5. Proof of Lemma 6

Suppose that Invariants 1 to 5 are fulfilled and let a be a vertex of A.
Assume that the set of marked vertices is B(a,R + 6k) \ B(a,R) and that
stopBFS is run from a vertex d such that d(a, d) = R + 1. Let g be the
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connected component of G \ B(A,R) explored by StopBFS, and denote by
Q and f the path returned by StopBFS and its last vertex. Note that as g
is a subgraph of G, dg(u, v) ≥ dG(u, v) for every vertices u and v.

Before dealing with the proof of Lemma 6, let us prove two intermediate
results on the regions of g to which f cannot belong. To do so, let H0 denote
the hub whose center h0 ∈ H is dominated by a, L1 the laminar containing
d which is incident to H0, and H1 the other hub L1 is incident to, while h1
denotes its center.

The first intermediate lemma concerns the behavior of StopBFS in L1, as
the distances in g and G may be quite different there.

Lemma 13. Suppose that StopBFS explores an uncolored vertex. Then one
of the following claims hold:

1. g is of Type c) with z = 1 and f has a colored neighbor;

2. f dominates h1;

3. f is outside L1 ∪H1;

In particular, the explored component is not of Type a).

Proof. Suppose that none of the claims is true. h1 is then not dominated,
otherwise the first claim would hold. Moreover, as H1 ⊂ B(h1, K + 2r + k),
f is a vertex of L1 \H1.

Let u be the first uncolored vertex of Q, and let d′, u′ and f ′ be vertices
of P1 that are at respective distances less than k from d, u and f .

Suppose first that f ∈ B(a,R+K), as illustrated in Figure 12. Then, as
dG(a, d) = R+ 1 and dG(a, u) ≥ R+ 2K + 2, Q contains two vertices v1 and
v2 such that dG(a, v1) = dG(a, v2) = R + K + 1 and u ∈ Qv1v2 . Moreover,
dg(vi, u) ≥ dG(vi, u) ≥ dG(a, u)− dG(a, vi) = K + 1, 1 ≤ i ≤ 2. The vertices
v′1 and v′2 on P1 that are at distance at most k of v1 and v2 are then both
closer to h0 than u′. As v1 and v2 are at distance at least K + 1 of B(a,R),
Qv1v2 is also a shortest path between them in G, so that this configuration
contradicts Lemma 11. Thus f is not in B(a,R +K).

The former paragraph implies that d′, f ′ and h1 are in that order on P1.
Lemma 3 thus implies that the shortest path in g linking d to h1 3k covers
f : there exist x on that path such that dG(x, f) ≤ 3k. Note first that, as
f /∈ B(a,R + K), none of the vertices on the shortest path from f to x
belongs to B(a,R), and the same holds for the subpath of P1 from x to h1.
Thus, h1 belongs to the same component than f , that is g. This implies that
g is not of Type a).
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Furthermore, as f is at distance more than 3k of B(a,R), dG(x, f) ≤ 3k
implies dg(x, f) ≤ 3k. Thus, as f is the furthest vertex from d in g and x
in on the shortest path from d to h1, dg(x, h1) ≤ 3k. Finally, dG(h1, f) ≤
dg(h1, f) ≤ 6k ≤ K + 2r + k and f dominates h1.

Figure 13 illustrates the notations used in the previous paragraph.

h h1
a

d

f

u

d′ f ′ u′

v1

v2

v′1 v′2

R

P1

Q

Figure 12: Notations used in the first part of Lemma 13. The shaded region corresponds
to marked vertices.

Lemma 14. Suppose that StopBFS explores an uncolored vertex. Consider
a maximal sequence of laminars and hubs L1,H1,. . . , Lz,Hz,Lz+1, such that
all hubs are in g and every hub Hi with i ≤ z− 1 is of degree 2. Denote by v
the last vertex of the laminar path Pz+1 of Lz+1 that belongs to g (if Lz+1 is
entirely included in g, v is the hub-center of the second hub Lz+1 is incident
to).

Then either f ∈ B(v, 6k), or f does not belong to
⋃

1≤i≤zHi∪
⋃

1≤i≤z+1 Li.

Proof. If z = 0, the sequence is limited to L1 and Lemma 13 applies. Consider
z ≥ 1. By Lemma 13, f doesn’t belong to L1.

Consider a hub Hi of center hi, 1 ≤ i ≤ z and let x be a vertex on the
middle of the laminar path Pi+1 of Li+1. The part of Pi+1 between hi and x
belongs to g and, as all hubs from H1 to Hi−1 are of degree 2, Hi separates
d from x. By Lemma 12, and as r + 6k < `

2
− 2r − 1, f does therefore not

belong to ∪1≤i≤zB(hi, r + 6k).
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Figure 13: Notations used in the second part of Lemma 13. The shaded region corresponds
to marked vertices.

Suppose now that z ≥ 2 and consider a vertex u which is in Li\(B(hi−1, r+
6k) ∪ B(hi, r + 6k)). Let S be the shortest path in g from d to hi, and w
a vertex in S ∩ Hi−1. Such a vertex has to exist as there are only hubs of
degree 2 between L1 and Li. Let u′ and w′ be vertices of Pi at distance less
than k respectively from u and w. Then

d(hi−1, w
′) ≤ d(hi−1, w) + d(w,w′) ≤ r + k

and
d(hi−1, u

′) ≥ d(hi−1, u)− d(u, u′) ≥ r + 5k

Thus, u′ is between w′ and hi on Pi, so that by Lemma 3, there exist x
on S such that dg(x, u) = dG(x, u) ≤ 3k. Then

dg(d, hi) = dg(d, x) + dg(x, hi)

≥ dg(d, x) + dg(x, u)− 3k + dg(x, hi)

≥ dg(d, u)− 3k + dg(x, hi)

Moreover, as x is at distance 3k of u and u at distance at least 6k + 1 of
hi, dg(x, hi) > 3k. Finally, dg(d, h) > dg(d, u), implying that u cannot be the
vertex at greatest distance from d. f is therefore not a vertex of Li.

Figure 14 illustrates the notations used in the previous paragraph.
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Finally, let u be a vertex in Lz+1 \ (B(hz, r+ 6k)∪B(v, 6k)). The former
paragraph can be mimiced by replacing hi by v: the shortest path S in g
from d to v has to 3k-cover u, which implies that u is closer than v to d
because dg(u, v) ≥ 6k + 1. f is therefore not in Lz+1 \B(v, 6k).

hi

d

u
u′

w

w’

x

hi−1

P1
Q

S
> 3k≤ 3k

Figure 14: Notations used in the first part of Lemma 14

Let us now prove Lemma 6 by considering the different topologies listed
in Lemma 4.

Type a) Lemma 13 implies that StopBFS explores no uncolored vertices.

Type b) Following the sequence of incident laminars and hubs starting at
L1 until a hub of degree at least 3 is met, g contains a sequence corre-
sponding to Lemma 14, with Hz of degree at least 3.

Either hz+1 is not dominated, and f is either outside Lz+1 or dominates
hz+1 by Lemma 14. Or hz+1 is dominated and the last uncolored vertex
v on Pz+1 is both at distance at most 6k of f , again by Lemma 14, and
at distance and most R + (K + 2r + k) of hz+1. In any case, f is at
distance at least `−R−K − 2r − 7k > `

2
−R from h.

Consequently, Lemma 5 implies that a triple (u, v, w) satisfying its
conditions has to exist.

Type c) If z = 1, Lemma 13 ensures that f dominates h1. Moreover,
dG(h0, h1) ≥ ` then ensures that f is not marked.

If z ≥ 2, Lemma 14 implies that f is in B(hz, 6k). As 6k ≤ K+ 2r+k,
f dominates hz. dG(h0, hz) ≥ ` then implies that f is not marked.

The definition of the Type c) component moreover implies that f can-
not neighbor a colored vertex.
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Type d) Let v be the last vertex on Pz which belongs to g. As Lz is incident
to B(hz, r), hz 6= h0, the next vertex on Pz is not in g because it belongs
to B(a′, R), a′ 6= a. When exploring g, StopBFS therefore explores a
vertex which neighbors B(a′, R) so that it stops with f being such a
vertex. f thus has a colored neighbor.

Moreover, d(a, f) ≥ d(a, a′)−d(a′, f) ≥ d(h0, h
′)−d(h0, a)−d(h′, a′)−

d(a′f) ≥ `− 2(K + 2r + k) > 6k. f is thus uncolored.

Type e) Let v be the last vertex on Pz which belongs to g. As Lz is inci-
dent to B(h0, r), the next vertex on Pz is not in g because it belongs
to B(a,R). Lemma 14 moreover implies that f belongs to B(v, 6k).
Finally, dG(a, f) ≤ R + 1 + 6k, so that f is a marked vertex.

Moerover, the path from d to f on the StopBFS tree has to cross
B(h1, r), so that it contains an unmarked vertex. f is thus different
from d.

5.6. Proof of Lemma 8

Let Q be the path computed by the BFS from s to x. Assume that Q
intersects a hub of degree at least 3 and of center h. Let y be a vertex
in this intersection. Furthermore assume that y is at distance more than
4K + 3k + 2 + 2r of s and x. Those vertices are then at distance more than
4K+3k+2+r of h, hence not in B(h, 4K+3k+2+r). No vertex of G being
colored, the BFS starting on s contains G and a fortiori B(h, 4K+3k+2+r).
Every condition of lemma 5 is verified, so that a triplet of vertices (u, v, w)
is detected.

Assume now that no triplet as defined in lemma 5 is found. By the last
paragraph we know that no vertex at distance more than 4K+ 3k+ 2+ 2r of
s and x is in a hub of degree 3 or more. The path Qs+4K+3k+2+2r,x−4K+3k+2+2r

is therefore in an unique laminar or in an alterning sequence of laminars and
hubs of degree 2.

If s is in a laminar, consider h an hub center which is not an extremity
of that laminar. If s is in a hub, consider h an hub center different from the
one of s. In any case, a path from s to h starts or goes through a hub H ′

with h′ 6= h, we have :

d(s, h) ≥ d(h, h′)− 2r ≥ `− 2r

35



The path Q is then of size at least `− 2r. Let m by in the middle of Q.
By the preceding remarks m is at distance at least `

2
− 4K − 3k − 2r − 2 of

every hub of degree 3 or more. The vertex m is in the center of a sequence
S = H0, L0, ...Hi, Li, ...Hz such that every hub of S is of degree 2, expect the
extremies H0 and Hz. G being connex and containing an hub of degree at
least 3, at least one extremity of the sequence is of degree 3 or more. Note
that we may have H0 = Hz.

If m is in a laminar then B(m,K) disconnects S by Lemma 1. If m is in
an hub H, then B(m,R) contains H and disconnects S. Let d by a vertex of
Q at distance R + 1 of m the closest from s. We have d at distance at least
`
2
− 4K − 3k − R − 2r − 3 of an hub of degree 3 or more. Furthermore d is

in a sequence S ′ = H0, L0, ...Hi, Li, ...B(m,R) such that H0 is of degree 1 or
of degree 2 or more and disconnects g = G \B(m,R).

In this second case, by Lemma 12, theBFS in g starting on d and reaching
f detects a triplet of vertices (u, v, w) as defined by Lemma 5.

We now only have to show that H0 is not an hub of degree 1. Assume
the opposite. The vertex s is then in a sequence S = H0, L0, ...Hi, Li, ...Hz

with Hz of degree at least 3, disconnecting S from the rest of the graph. If
x is in S then B(x,R) disconnects s from G \ S. Let h be an hub outside of
S,

d(s, h) ≥ d(s, x)− 2R + d(x, h) ≥ d(s, x)− 2R + d(hz, h)− 2r

≥ d(s, x) + `− 2(R + r) > d(s, x)

It contradicts the fact that x is a vertex furthest from s. If x is not in S,
it is still at distance at most 4K + 3k + 2 + 2r from hz.

d(s, h) ≥ d(s, hz) + d(hz, h
′)− 2r ≥ d(s, hz) + `− 2r

d(s, x) ≤ d(s, hz)+d(hz, x)+2r ≤ d(s, hz)+4K+3k+2+4r ≤ d(s, hz)+`−2r

A contradiction is again obtained to the the fact that x is a vertex furthest
from s.

5.7. Proof of Lemma 9

The two first items are verified at the beginning of the algorithm. Indeed,
the set A returned by FindHubs is H-dominating. Therefore, all hubs of
degree 1 or 3 are dominated and thus only components of Type a), d) or e) are
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present in G \B(A,R). Moreover, every component of Type a) is contained
in some B(a,R+ 2K + 1), a ∈ A, as a consequence of Lemma 13. As `

2
> R,

the central vertex x of the laminar path containing a Type a) component
is deletable. Moreover, d(a, x) ≥ d(h, x) − d(a, h) ≥ b `

2
c − (K + 2r + k) >

R + 2K + 1 , so that x has to belong to a Type d) or e) component.
Once initially true, those two items clearly remain true given the two last

ones for each iteration of either loop.
Moreover, at as each iteration the number of deletable vertices decreases

strictly until there are no more components of Type d) or e), the algorithm
ends with no deletable vertices. It is therefore sufficient to show that the two
last items are verified given the first ones.

Consider an iteration of the For loop that deletes vertices. As FindHubs
added vertices in B only in the middle of Type e) components, b belongs to
such a component.

All vertices of that component, as well as all vertices of Type a) compo-
nents included in L1 or Lz, are K-covered by Q1 or Q2. Indeed, if it where
not the case, an uncolored vertex c is found and added to A at Line 15, and
no vertex is deleted in that loop.

To prove that no other vertices from other components are deleted, we
have to prove that Q1 (and by symmetry Q2) does not K-cover any vertex of
a laminar L incident to B(a,R) and different from L1. Let h be the vertex
of H dominated by a, and such L and L1 are incident to B(h, r).

The deletable vertices of L beeing at distance at least R− (K+2r+k) ≥
r + 3k +K from h, none of them is deleted if Q does not enter L.

Let therefore assume there exits vertices x, y and z appearing on Q in
this order, such that x and z are L ∩ B(h, r) and y is the vertex on Q the
furthest of h. Let x′, y′ and z′ be vertices on the laminar path k-covering
them. If y′ is closer to h than x′ or z′, say x′,

d(h1, y) ≤ d(h1, x
′) + d(y′, y) ≤ d(h1, x) + d(x, x′) + d(y′, y) ≤ r + 2k

If not, Lemma 11 implies that d(x, y) ≤ 3k. In any case, d(h, y) ≤ r+3k.
Thus any vertex K-covered by Q is at distance at most r + 3k + K from h,
that is is undeletable. None of the deletable vertices of L(x) is thus deleted.

Consider now an iteration of the While loop that deletes vertices. As
all Type e) components contained some vertex b ∈ B and where therefore
deleted during the for loop, only components of Type a) and d) remain.
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Every constructed path Q linking some B(a,R) to B(a′, R), a′ ≤ a, it
hits a component of Type d). All vertices of that component, as well as all
vertices of Type a) components included in L1 or Lz, are then K-covered
by Q. Indeed, suppose it is not the case, and let w be a vertex of such a
component at distanceK+1 ofQ. Consider u onQ such that d(u,w) = K+1.
As R ≥ 4K + 2 and w /∈ B(a,R), u belongs to r3K(Q). A triple satisfying
Lemma 5 is thus found and no vertex is deleted.

The fact that no vertices in other components are deleted in that iteration
is proven in the same way as for the For loop.

6. Embedding and distance labeling

6.1. Circle embedding with bounded distortion

Proposition 1, stated in Section 3, is a consequence of Theorem 1 and the
two following propositions.

Proposition 3. Any graph G having a circle embedding with distortion γ
has a shortest path or an isometric cycle with eccentricity bγ/2c at most.

Proof. Consider an embedding of G in a circle C with distortion γ. Suppose
that any shortest path of G has eccentricity greater than bγ/2c. We first
show that G contains a simple cycle that bγ/2c dominates the graph. Given
a path P , two consecutive nodes u, v of P are at distance at most γ in the
circle embedding, and P thus bγ/2c-dominates any node embedded between
u and v in the circle. We define the arc PC of P in C as the smallest arc
of C where nodes of P are embedded. Note that all nodes embedded in PC

are bγ/2c-dominated by P . Consider a shortest path P with longest arc PC

and let a, b denote the extremities of PC . If P does not bγ/2c-dominate G,
consider a node c at distance greater than bγ/2c from P . Node c cannot
be embedded in PC . Consider a shortest path Q from c to a in G. The
arc QC contains one of the two circle arcs joining c and a. The choice of
P implies that QC cannot contain PC . The path QC thus bγ/2c-dominates
nodes embedded in the arc Cca of C from c to a that avoids the interior of
PC . Similarly, the shortest path R from c to b dominates nodes embedded in
the arc Ccb of C from c to b that avoids the interior of PC . Let a′ be the first
node of Q in P . Let Q′ be the sub-path of Q from c to a′ and let P ′ be the
sub-path of P from a′ to b. Note that the arc of Q′ ∪ P ′ contains the arc in
C from c to b in QC ∪ PC . Similarly, let b′ be the first node of R in Q′ ∪ P ′.
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Then define R′ as the sub-path of R from c to b′ and Q′′ as the sub-path of
Q′ ∪ P ′ from c to b′. Note that R′C contains the arc from c to b which is not
in RC ∪ PC . The union Q′′ ∪R′ defines a simple cycle that bγ/2c-dominates
G as Q′′C ∪R′C = C.

Now consider a simple cycle S of G that bγ/2c-dominates G and has
minimum length. S must be isometric: otherwise there would be a path P
from a to b in G that is shorter than both paths Q and R of S from a to b.
Consider the arc A of C from a to b included in PC . Without loss of generality,
Q dominates the nodes embedded in the other part C \ A of the cycle. We
can then construct from P ∪Q (similarly as above) a simple cycle that bγ/2c-
dominates G in contradiction with the choice of S as |P |+ |Q| < |S|.

Proposition 4. Given a graph G and an isometric cycle with eccentricity
k in G, an embedding of G in a circle with distortion O(k · cd(G)) can be
computed in polynomial time.

Proof. The construction of the embedding is similar to that of Dragan and
Leitert (2015) with Euler tours of trees of depth k rooted. However, our
trees are rooted on a cycle rather than a path. Consider an isometric cycle
C of G having eccentricity k. We construct a forest F with roots in C as a
union of shortest paths: for each node u ∈ V (G) we select a node u′ such
that d(u, u′) = d(u,C) and add to F a shortest path from u to u′ (u′ = u
for u ∈ C). For each tree T of F rooted at a node c ∈ C, we construct
an Euler tour Ec which is a sequence of tree edges starting from c, visiting
all nodes of T in a depth-first-search manner and terminating at c. Each
edge is used twice and the length of Ec is 2(n′ − 1) where n′ denote the
number of nodes in T . We then obtain a tour of the whole graph as the
sequence EC = Ec1 , c1c2, Ec2 , . . . , cp−1cp, Ecp , cpc1 where p is the length of C
and c1, . . . , cp are the nodes of C ordered according to the cycle order. Note
that this tour contains 2n edges at most and can be embedded in a circle C ′

with same length.
We now analyze the distortion of this circle embedding in C ′. Given an

edge uv of G, consider the roots u′ and v′ of the trees of u and v respectively.
Let S denote the union of trees rooted on the shortest path from u′ to v′ in C.
Note that the distance from u to v in the tour EC is at most twice the size of
S. To upper-bound |S|, we consider an embedding of G in a circle Copt with
distortion γ = cd(G). As we have d(u′, v′) ≤ 2k + 1, the diameter of S is at
most 4k+1. Two nodes of S are thus embedded at distance at most γ(4k+1)
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in the circle Copt and different nodes are at distance 1 at least. We thus have
|S| ≤ 2γ(4k + 1), and our embedding in C ′ has distortion O(γk).

6.2. Distance labeling for general hub-laminar decomposition

A hub-laminar decomposition of a graph G allows to compute a compact
representation of distances in G with additive distortion. A distance labeling
is said to be c-additive and have s bit labels when the label Lu assigned to
a node u contains at most s bits and for all pairs of nodes u, v, a distance
estimation d̂uv can be computed from Lu and Lv such that d(u, v) ≤ d̂uv ≤
d(u, v) + c. Proposition 2 is a consequence of Theorem 2 and the following
proposition.

Proposition 5. Given a (r, k)-hub-laminar decomposition with λ laminars
(H,P) of a graph G, a max(4k, 2r)-additive distance labeling with O(λ log n)
bit labels can be computed in polynomial time.

Proof. We assume that hub centers are numbered from 1 to q, q ≤ 2λ and
laminars from 1 to λ. For every u ∈ V (G), we define a hub label Hu consisting
in all pairs (h, d(u, h)) for h ∈ H. For a node u in a hub, i.e. when there
exists h ∈ H such that u ∈ B(h, r), we define its label Lu as its hub label,
i.e. Lu := Hu. For a node u in a laminar with number α, i.e. there exists
P ∈ P with endpoints h1 < h2 such that u ∈ B(P, k) \ B({h1, h2} , r), we
additionally store (dP (h1, u

′), d(u′, u), α) for some u′ ∈ B(u, k) ∩ P and set
Lu := (dP (h1, u

′), d(u′, u), α), Hu (we let dP denote the distance in the graph
induced by P ).

The distance d(u, v) between two nodes u, v ∈ V (G) is then estimated
from their labels Lu and Lv as follows. We first compute the estimate through
hub centers g(u, v) = minh∈H d(u, h) + d(v, h). If Lu and Lv both begin
with triples (d(h1, u

′), d(u′, u), α) and (d(h1, v
′), d(v′, v), α) respectively with

α = α′, we detect that u and v belong to the same laminar and return the
distance estimate f(u, v) = min(g(u, v), g′(u, v)) where g′(u, v) = d(u′, u) +
|dP (h1, u

′) − dP (h1, v
′)| + d(v′, v). Otherwise, we simply return f(u, v) =

g(u, v) as distance estimate.
We now prove that we have d(u, v) ≤ f(u, v) ≤ d(u, v) + max(4k, 2r).

By triangle inequality, we have d(u, v) ≤ d(u, h) + d(v, h) for all h ∈ H and
thus obtain d(u, v) ≤ g(u, v). In the case where u and v both belong to
the same laminar B(P, k), note that g′(u, v) is the length of a path through
vertices u′, v′ ∈ P from u to v, implying g′(u, v) ≤ d(u, v). We thus have
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d(u, v) ≤ f(u, v) in any case. Now consider a shortest path Q from u to v.
First assume Q intersects a hub: there exists h ∈ H such that Q∩B(h, r) 6= ∅.
Consider x ∈ Q∩B(h, r). We then have d(u, v) = d(u, x)+d(x, v) ≤ d(u, h)+
d(h, x)+d(v, h)+d(h, x) ≤ d(u, h)+d(v, h)+2r implying g(u, v) ≤ d(u, v)+
2r. Second, suppose that Q does not intersect any hub, it must then be
included in a laminar according to Axioms 2 and 4 of Definition 1. Consider
P ∈ P with endpoints h1 < h2 such that Q ⊆ B(P, k) \ B({h1, h2} , r).
Then u and v both belong to the laminar and their labels contain triples
(d(h1, u

′), d(u′, u), α) a (d(h′1, v
′), d(v′, v), α′) respectively. Consider the sub-

graph GP induced by B(P, k). By triangle inequality, we have dGP
(u′, v′) ≤

dGP
(u, u′) + dGP

(u, v) + dGP
(v, v′). As Q is included in GP we have d(u, v) =

dGP
(u, v) and we obtain |dP (h1, u

′)− dP (h1, v
′)| = dGP

(u′, v′) ≤ d(u, v) + 2k
and thus get f(u, v) ≤ g′(u, v) ≤ d(u, v) + 4k. In any case we have f(u, v) ≤
d(u, v) + max(4k, 2r).
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