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Abstract

The creation of synthetic data through generative modeling has emerged as a sig-
nificant area of research in genomics, offering versatile applications from tailoring
functional sequences with specific attributes to generating high-quality, privacy-
preserving in silico genomes. Notwithstanding these advancements, a key challenge
remains: while some methods exist to evaluate artificially generated genomic data,
comprehensive tools to assess its usefulness are still limited. To tackle this issue
and present a promising use case, we test artificial genomes within the framework
of population genetics and local ancestry inference (LAI).

Building on previous work in deep generative modeling for genomics, we introduce
a novel, frugal diffusion model and show that it produces high-quality genomic
data. We then assess the performance of a downstream machine learning LAI
model trained on composite datasets comprising both real and/or synthetic data.
Our findings reveal that the LAI model achieves comparable performance when
trained exclusively on real data versus high-quality synthetic data. Moreover, we
highlight how data augmentation using high-quality artificial genomes significantly
benefits the LAI model, particularly when real data is limited. Finally, we compare
the conventional use of a single synthetic dataset to a robust ensemble approach,
wherein multiple LAI models are trained on diverse synthetic datasets, and their
predictions are aggregated.

Our study highlights the potential of frugal diffusion-based generative models
and synthetic data integration in genomics. This approach could improve fair
representation across populations by overcoming data accessibility challenges,
while ensuring the reliability of genomic analyses conducted on artificial data.

1 Introduction

Generative Al has been widely adopted across various domains thanks to recent advances in novel
algorithms and architectures. Synthetic outputs generated by these models often capture essential
characteristics of real-world data and, in some cases, can match human production in specific tasks
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such as question-answering (Ke et al.| 2024). Synthetic data is also useful across fields, as it enables
the creation of diverse datasets that can improve model training, facilitate testing in resource-limited
areas, and help overcome data scarcity (Beaulieu-Jones et al.,|2019; [Lu et al.,[2023). In genomics,
generated data is particularly valuable because it could allow for the study of genetic diversity without
compromising individual privacy and enable the testing and application of genome-wide-association-
studies or other methodological developments without the need for exhaustive real-world samples
(Yelmen and Jay, [2023} [Wharrie et al., [2023]).

However, compared to image and text domains, artificial genomic data is substantially more challeng-
ing to assess both in terms of quality and utility, due to the complex and very high dimensional data
structure shaped by billions of years of evolution. Here, we define the utility of artificial genomes for
a given task based on whether a model solving the downstream task achieves comparable performance
using synthetic data as with real data. In this context, predictive performance in various tasks can
serve as an indicator of utility while population genetics summary statistics as an indicator of quality
(Yelmen et al.|, 2021} 2023} |Szatkownik et al.| 2024 alb), albeit these two concepts overlap in most
cases (Lacan et al.;, 2023 [2024; Montserrat et al., 2019)). Previous studies on the utility of synthetic
genomic data have explored various aspects, including genomic imputation, detection of natural
selection, and inference of evolutionary parameters (Yelmen et al.,[2021;|Wang et al.|[2021). In this
work, we focus on one such aspect, local ancestry inference (LAI), extending the work of Montserrat;
et al.|(2019).

The genetic material of individuals can be inherited by ancestors coming from different populations.
Each individual in a population might have different ancestry coefficients, representing the proportions
of their genome derived from multiple ancestral gene pools due to admixture events (Frichot et al.|
2014). Upon closer examination, one can observe that these ancestries are distributed across the
genome. The objective of LAI methods is to determine which part of the individual’s genome
comes from which ancestral population, allowing refined analysis of past demographic events and
natural selection with respect to these specific ancestries. Therefore, ancestral reference genomes
used in LAI should not only be representative of correct genome-wide global structure with long-
range dependencies, but also have to conditionally represent the correct local structure such as
linkage between genomic positions. Many algorithms for LAI have been developed over the years,
traditionally using Hidden Markov Models (Price et al.,2009; [Salter-Townshend and Myers| [2019;
Lawson et al., 2012} [Skov et al.l 2018} |[Planche et al., 2024), statistical methods (Yang et al., 2013)),
PCA (Brisbin et al.,2012), and more recently, graph optimization (Dias-Alves et al., 2018 |Wei et al.,
2023)) and machine learning (Maples et al.| 2013} Montserrat et al., 2020; Hilmarsson et al., 2021)).

In this study, we introduce a novel frugal latent diffusion model for human genetic data. Previous
works in artificial genome generation have utilized restricted Boltzmann machines (RBMs), varia-
tional autoencoders (VAESs), generative adversarial networks (GANs), generative moment-matching
networks (GMMNSs), probabilistic circuits (PCs) and large language models (LLMs) (Yelmen et al.,
2021} |Perera et al.,2022; |Dang et al., 2023} [Zhang et al.}|2024)), see|Yelmen and Jay| (2023)) for a re-
view. Some of these models were designed to be conditional on population labels, other demographic
parameters, or the preceding genomic region, which permits refining the learned data distribution and
conditional sampling of generated genomes based on these labels (Montserrat et al.,|2019; |Booker
et al.l 2023} |Yelmen et al., 2023). Denoising diffusion probabilistic models (DDPM) have been
originally tested for image and audio generation and are known to be useful for tasks involving
high-dimensional data synthesis (Sohl-Dickstein et al., 2015 [Ho et al.,|2020). Their applications
range from image super-resolution, text-to-image generation, inpainting of images or computational
fluid dynamics data to molecular structure generation (Kong et al., 2021; Dhariwal and Nicholl [2021};
Ramesh et al., 2021; Rombach et al., [2022; Saharia et al., [2023; |[Lugmayr et al., 2022} Shu et al.,
2023} [Hoogeboom et al., 2022} Xu et al.l 2022). Recently they have been applied in functional
genomics for generating short DNA sequences conditioned on species type, expression level, or
cell type with success (Li et al.| [2023] 2024} Pinello, 2024). Yet, to our knowledge, no diffusion
model has been designed for population genetics, with a focus on capturing genomic variation and
population genetic diversity. In this work, we aim to leverage the relative ease of training diffusion
models (especially compared to GANs) to develop a DDPM conditioned on continental group labels
(also called super-populations).

We trained our frugal diffusion model, Light PCA-DDPM, on a diverse panel of human genomic data
and examined the synthetic data generated. After evaluating the quality of these artificial genomes in
terms of summary statistics, we assessed their usefulness for LAI. For that, we relied on a recent deep
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learning based method called LAI-Net (Montserrat et al., |2020), due to its high performance and low
time complexity. We trained LAI-Net on this synthetic data and compared predictive performance to
LAI-Net trained on real data. We further increased synthetic sample size and studied the impact on
LAI performance. We also explored a diffusion-based data augmentation scenario by adding synthetic
data to training sets including varying amount of real samples, mimicking different data accessibility
scenarios. Finally, we investigated a Deep Generative Ensemble approach (DGE) (van Breugel et al.|
2023)), that involved the training of multiple generative models and LAI-Nets to mitigate potential
generative errors in downstream tasks.

2 Materials and Methods

2.1 Dataset description

Full dataset. The 1000 Genomes (1KG) Project is a database of human genome sequences, designed
to capture the broad genetic diversity of the human species by sampling individuals from 26 distinct
populations scattered across the continents (The 1000 Genomes Project Consortium, [2010). Each
population is represented by a number of haplotypes ranging from 122 to 226 (FIG{S1). The
dataset used in this study is derived from the one curated by [Yelmen et al.| (2023)), that included
2,504 individuals, corresponding to 5,008 phased haplotypes (i.e., one haplotype inherited from
each parent per individual). It comprises 65,535 contiguous SNPs spanning chr1:534247-81813279
(approximately 80 megabase pairs) within the Omni 2.5 genotyping array framework. The data is
organized as follows: rows represent phased haplotypes, while columns indicate allele positions,
coded as 0 if the nucleotide matches the reference genome (GRCh37), and 1 if it represents a point
mutation. This results in a binary matrix representation of the dataset.

Three-continent dataset. A subset of the Full dataset targeting unadmixed individuals classically
used to create LAI reference panels, i.e. individuals labeled as African (AFR) (removing ASW and
ACB as these are admixed), East Asian (EAS) and European (EUR), amounting to 1,510 samples.
We applied a train-test split of 80-20%, resulting in 1,208 and 302 diploid sequences respectively.
The training set was further sub-sampled to an equal amount of 396 diploid sequences per ancestry
(i.e., 1,188 individuals in total).

Haptool-admixed test sets. The remaining 302 sequences were used as input data for the admixture
forward-simulator Haptools (Massarat et al.| [2023)) to produce a final amount of two sets of 156
admixed individuals for test data (i.e., 312 haplotypes in total), see section [2.3] for details.

AMR test set. A subset of the Full dataset including individuals labeled as American (AMR) (CLM,
MXL, PEL, PUR, ACB, ASW), amounting to 504 diploid sequences.

2.2 LAI-Net

LAI-Net (Montserrat et al., |2020) is a supervised algorithm that takes as input phased diploid
sequences. These haplotypes are then split into non-overlapping SNP windows for which the size is a
user-defined parameter and represents the resolution of the algorithm. For each of these windows a
neural network is assigned, which outputs a vector of probabilities across the ancestral populations.
A second layer, consisting of learned convolutions, refines the inference by smoothing the prediction
of a window given neighboring windows. In our application, we fixed the window size to 500 SNPs
and maximum number of training epochs to 700. The ancestral sources used were Africa (AFR),
Europe (EUR), and East Asia (EAS). All other parameters were default.

2.3 Local ancestry inference

We trained multiple LAI-Nets on both real (Three-continent dataset) and synthetic datasets, each
comprising an equal number of EUR, AFR, and EAS ancestral samples. The synthetic data were
generated using a conditional diffusion model (see Subsection[2.4) and a baseline random matrix
model (see Subsection. [2.5)).

For model evaluation, we used both real haplotypes (AMR test set) and artificially admixed haplotypes
with ground-truth admixture information as target sequences (haptool-admixed test sets). The AMR
test set consisted of 504 admixed American samples. We used separate held-out samples (i.e., not
used as ancestral samples for training LAI-Net) from the three ancestral sources to construct the
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haptool-admixed test set using the forward simulator Haptools (Massarat et al.| [2023)). The simulator
takes as input 1KG project haplotypes from the ancestral populations and a set of parameters: the
ancestry coefficients (i.e., percentage of ancestries over the whole genome) desired for the output
sequences and the number of generations under which the simulation takes place. Then the sequences
are shuffled based on these parameters and recombination is simulated to produce admixed haplotypes.
This process allows us to have full control over the admixture event and know the ancestry at each
genomic site. We ran the simulator to admix EUR, AFR and EAS held-out samples with ancestry
coefficients of 0.51, 0.16 and 0.33 respectively, which could correspond to estimates for some real
American populations when EAS is considered as a proxy for indigenous AMR component (Medina
Muiioz et al.||2023; Browning et al.,|2018). The number of generations since admixture was fixed at
30 (haptool-admixed-30) and 60 (haptool-admixed-60). There is a relation between the number of
generations and the size of genomic windows defined by crossover events (See Appendix[ST.3). The
number of generations was chosen to have an easy task and a hard one, both with the property that
window sizes are larger than the resolution of LAI-Net (set to 500 SNPs), thus avoiding impractical
data.

Overall, we checked how accurately each ancestry was assigned by computing per ancestry, whether
the prediction for a given window was correct or not. For simulated test data with ground truth, the
label of a window was set as the dominant ancestry in that window. The accuracy per ancestry was
averaged over all windows and all samples. We either kept the results per ancestry or did a weighted
average where the weights correspond to the true ancestry coefficients. For AMR test data, since true
ancestral compositions are not available, we assessed the concordance across the genome (identity
percentage) between LAI-Net trained with real and synthetic ancestral samples.

2.4 Light PCA-DDPM

A Denoising Diffusion Probabilistic Model (DDPM) (Sohl-Dickstein et al.,|2015; Ho et al., 2020)
consists of a denoising neural network trained to predict the noise of a corrupted sample or the
original sample. In practice it was shown to work best by predicting the noise (Ho et al.l 2020). The
corruption phase, called forward process, takes a sample zo € R” from the real data distribution,
where D is the dimension of the data space, and creates a sequence of increasingly noisy versions:
x1, Ta, ... vp € RP. This sequence is produced by gradually adding Gaussian noise to the data
according to some noise schedule 531, ..., fr, i.e.,

g(xi|zi—1) = N(V1 = Brze—1, Bilp).

This forward noising operation can be computed in closed-form, allowing one to bypass the sequential
process of gradual noising and landing directly at the desired time ¢, i.e.,

t
Ty = Vayrg + V1 — e where ap = H(l — Bs) and e ~ N(0,1p) (D
s=1
The noise level §; increases linearly with time, from 0.0001 to 0.02. The final z is an isotropic
Gaussian noise sample.

While the forward process does not involve any optimization, the backward process entails inverting
the forward noising procedure by training a neural network fy to progressively denoise each sample
x, in decreasing order of ¢, i.e., from ¢t = T to ¢t = 0. In practice, to train a diffusion model, we:

1. Sample z( from the dataset, sample a random time step ¢ and sample random Gaussian
noise €

2. Corrupt the data sample x( into noisy sample x; via the forward process Eq. (1)

3. Predict the noise in z; by running it through fy

4. Minimize the loss ||fo(x:,t) — €||3 with respect to 6, where the loss is the MSE between
the true noise and predicted noise, i.e. the goal of the network is to predict e from a noisy
observation, conditionally on time step ¢.

Once the model is trained, the backward operation corresponds to generative modeling. To generate
new fake data, we sample from an isotropic Gaussian distribution, and iteratively remove the noise
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incrementally by going over all the time steps, from 7" to 0:

- L . \/1B—t — folw 1)) + Bz with 2 ~ (0, Tp) @

For our implementation, Light PCA-DDPM, we adopted a similar approach to that of Light PCA-
WGAN (Szatkownik et al., [2024b) to maintain low complexity. Here, instead of a WGAN, we
employed a DDPM and additionally conditioned the denoising neural network on the super-population
from which an original sample xy comes from, i.e., AFR, EUR or EAS. Light PCA-DDPM combines
an initial PCA on real data, retaining all principal components (PCs), with generative modeling in
that latent space (FIG.[T). The resulting PC scores are split into a high variance (first six dimensions
/ PCs) and low variance (remaining 2134 dimensions / PCs) parts. The DDPM is trained on the
high variance PCs which display multi-modal structure. Then a multivariate normal distribution
(MVN) is constructed to model the remaining 2134 PCs. This MVN is parameterized by a mean
vector 1 = (fiz, ...fi2140) extracted by taking the mean over the low variance real PC scores across

all individuals, and a diagonal covariance matrix 3 = (61, ..., G2149) computed similarly using the
low variance real PC scores across all individuals.

Tt-1

(zt —

For generation, we sample random Gaussian noise and a super-population label, which are processed
through the denoising network to produce the high-variance PC scores for the desired ancestry. The
corresponding low variance PC scores are generated by sampling the MVN independently of the
high variance PC scores and unconditionally to the super-population label. Finally, the high and low
variance synthetic PC scores are concatenated and inverse transformed back into SNP space with
PCA inverse transform. The resulting sequence is then binarized with fixed threshold set to 0.5.

Our implementation of fy’s architecture is detailed in Appendix[ST.2] We will hereafter use the term
PCA-DDPM when referring to Light PCA-DDPM, for the sake of simplicity.

Synthetic PCA inverse
PCA data generation transform
. DDPM > .

Real genomes Artificial genomes

Subp?r-populagobr» DDPM| ——— (PCl,,PCﬁ) —l
High variance E

Figure 1: PCA-DDPM. PCA is first applied to real SNP data. During training, only the DDPM
is involved, learning to mimic the distribution of real data in the latent space, conditioned on the
ancestral super-population labels (matrices in PCA space are square matrices). At sampling, the high
variance PC scores (dark pink) are generated by the DDPM, while the low variance PC scores (light
pink) are sampled independently from the MVN. The two components are then concatenated, inverse
transformed using inverse PCA, and binarized to produce artificial genomes.

2.5 Bernoulli model

We also designed a simple generative model for SNP data based on one-point statistics only, to
compare the artificial genomes against. This baseline random matrix model is a mixture of three
Bernoulli distributions, with parameters derived from the allelic frequencies at each site in the AFR,
EUR, and EAS super-populations of the real data, respectively. More precisely, for each site and
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group, we computed the frequency f of the alternative allele in the reference individuals. For each
group, we then generated artificial genomes by randomly selecting the alternative allele at each site
with probability f. We will hereafter use the term Bernoulli model, when referring to this mixture of
three Bernoulli distributions.

2.6 Deep Generative Ensemble

In real-world applications of generative Al, the most straightforward approach that balances both
privacy and usability is for the data holder to train a single generative model to produce synthetic data,
which is then shared (Naive scenario). The downstream data user can then utilize this synthetic dataset,
for instance, to train a machine learning (ML) model. However, previous work shows that treating
synthetic data as equivalent to real data leads to poor downstream model training and evaluation, with
higher susceptibility to perform worst for under-represented classes (van Breugel et al., 2023)). Deep
generative ensemble (DGE) was proposed to avoid these problems. In this framework, the data holder
trains K generative models (KX > 1, and using different seeds) and generates K synthetic datasets
which are shared. The data user trains K ML models with these synthetic datasets and aggregates
the results by averaging the predictions. Additionally to these previous scenarios presented in (van
Breugel et al.l 2023), we explored two novel ones, the Naive big and DGE big scenarios. The Naive
big refers to having larger synthetic sample size than Naive (here we set it to be four times larger than
real sample size), while the DGE big scenario, refers to the DGE setup with synthetic data being four
times larger than real sample size. Here we fixed K = 5 and used PCA-DDPM as the generative
model. Moreover, each scenario was repeated 10 times to have an estimation of the variance.

3 Results

3.1 Quality of artificial genomes

We first assessed the capacity of PCA-DDPM (Methods. to generate highly diverse and high
quality artificial genomes. The quality of the synthetic data was evaluated via a set of population
genetics summary statistics and compared to the previously established Light PCA-WGAN model
(Szatkownik et al.l [2024b) and to the baseline Bernoulli model. All models were trained on the Full
dataset of 2,504 individuals spread across the five super-populations. PCA-DDPM performed on
par with Light PCA-WGAN on summary statistics measuring global patterns of genetic variation.
Notably, they retrieved population genetic structure as captured by the first axes of a PCA and the 1D
Wasserstein distance between PC scores was slightly better for PCA-DDPM than for PCA-WGAN.
Interestingly, the Bernoulli model outperformed both of these models on the first two PCs (FIG.
[S2). This result can be attributed to the modes of the PC scores for the Bernoulli model being
closely aligned with those of the real data, albeit having a substantially shrunk distribution (FIGIS3),
demonstrating that the Wasserstein distance can be very sensitive to mode densities as reported in the
literature (Montavon et al.,2016). Furthermore, PCA-DDPM and PCA-WGAN also had good and
similar abilities to capture allelic frequencies. Since the Bernoulli model was explicitly given allelic
frequencies, it also performed well on this metric as expected. Both PCA-DDPM and PCA-WGAN
exhibited comparable local haplotypic structures based on linkage disequilibrium (LD) measurements
(see FIG.[S2), while the Bernoulli model, designed to capture only one-point statistics, was unable to
capture the LD structure. Finally, PCA-DDPM and PCA-WGAN again displayed similar behavior
on the three-point correlation statistics (FIG. @]) However, while the Bernoulli model showed low
correlation in short-distance three-point interactions, it performed relatively well on the long-distance
ones. This could be explained by the fact that short-range interactions among SNPs are primarily
influenced by physical linkage, while long-range interactions are largely determined by population
structure. Consequently, the Bernoulli model, which is fitting each super-population independently,
more effectively captures long-range correlations arising from differing allele frequencies across
super-populations (see also inset in LD plot of FIG[S2).

3.2 Ancestry inference on ground truth data

LAI-Net trained on real AFR, EAS, EUR individuals (Three-continent dataset) and tested on the
haptool-admixed test sets yielded good overall accuracy (see Table[T). Synthetic data generated by
PCA-DDPM trained on the Three-continent dataset performed similarly to real data (though with
slightly lower overall accuracy), suggesting that the synthetic dataset may contain information content
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comparable to that of the real dataset. Furthermore, even though LAI-Net trained on synthetic data
coming from the Bernoulli model performed surprisingly well, the accuracy was below that of the
other classifiers by ~ 10%. This suggests, as expected, that allele frequency information alone is not
sufficient for LAI and that our diffusion model retain characteristics that are relevant for this task.

Table 1: Accuracy (Precision in %) of LAI-Net trained on real or synthetic data and evaluated on
haptool-admixed-30 and haptool-admixed-60 test datasets. Synthetic data is either coming from
PCA-DDPM or Bernoulli model. Ancestry coefficients in test data are 0.16, 0.33,0.51 for AFR, EAS,
EUR respectively. LAI-Net was trained 10 times, with each training run using a different random
seed for sampling from the same generative model.

Dataset haptool-admixed-30 haptool-admixed-60

Real PCA-DDPM  Bernoulli Real PCA-DDPM  Bernoulli
AFR 93.65 £0.12 93.49 £0.15 84.9+3.21 [88.29 £0.19 88.57£0.34 79.0+3.4
EAS 94.6 £0.14 9336+ 0.16 79.33 £2.94|/90.99 £0.12 89.78 £ 0.15 76.25 +2.56
EUR 95.67 £0.07 95.02 £0.06 88.93 + 1.56(92.94 £ 0.08 92.25 £0.11 87.19 £+ 1.02

Weighted average 95.0 £ 0.08 94.23 £0.08 85.12 +2.27|91.55 £ 0.06 90.85 £ 0.09 82.27 £ 1.90

3.3 Ancestry inference on admixed American samples

We further wanted to test the utility of artificial genomes when performing LAI on real admixed
populations. Since true ancestral composition of real genomes are not available, we instead computed
the percentage of identity between predictions on admixed American populations (AMR test set)
from LAI-Net trained on real data and LAI-Net trained on synthetic data generated via PCA-DDPM
or the Bernoulli model. For the pairs of predictions coming from real data & synthetic data from
PCA-DDPM, we achieved 93% of identity over all populations, while with real data & synthetic data
from the Bernoulli model, we achieved 83% of identity. Similar to the findings from the forward
simulations, this suggests that artificial genomes generated via PCA-DDPM have richer information
content than those generated via the baseline Bernoulli model.

We further investigated the identity percentages at the population level (FIG. ). For both
PCA-DDPM and Bernoulli model, the identity percentages were lowest for Mexicans (MXL) and
Peruvians (PEL), which are two populations with the highest estimates of East Asian (EAS) ancestry.
Additionally, LAI-Net trained on synthetic data predicted a higher proportion of EAS compared to
when it was trained on real data. This tendency was more pronounced when LAI-Net was trained on
synthetic data generated from the Bernoulli model.

Left, right bar: Real, PCA-DDPM Left, right bar: Real, Bernoulli
99.3 98.8 92 88 84.3 95.1

92 91 79.9 77 76.4 83.1 | Identity (%)

100 100

80 80

60 60

40 40
EEN AFR
20 N EAS

BN EUR

20

Proportion of predicted ancestry

Proportion of predicted ancestry

0 0

ACB ASW CLM MXL PEL PUR ACB ASW CLM MXL PEL PUR

Figure 2: Identity (%) between predictions on AMR test set of LAI-Net trained on real and
synthetic data. LEFT. Synthetic data is generated from PCA-DDPM. For each z, the left bar is the
result of LAI-Net trained on real data and the right bar is the result of LAI-Net trained on synthetic
data. The colors represent the proportion of predicted ancestry; AFR (blue), EAS (green), EUR
(red); unfolded over populations within the American continent. The percentages of identity between
predictions of both models are shown for each population on top of the bars. RIGHT. Synthetic data
is generated from the Bernoulli model.

3.4 Increasing synthetic sample size

To test whether larger synthetic datasets can improve LAI, we generated synthetic data from both
PCA-DDPM and Bernoulli model, with sample sizes being 2%, 4 x or 6 x larger than real data (Table
). With increased sample sizes, we observed almost no performance improvement for LAI-Net
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trained on synthetic data from PCA-DDPM, except for a slight increase of 1.3% in accuracy for EAS
predictions, hence we did not carry out the extensive computations required to test the remaining
sample sizes. Similarly, training LAI-Net on synthetic data from the Bernoulli model with increasing
sizes did not improve accuracy, but instead very slightly decreased it by ~ 1% and lead to lower
variances for 2x and 4 x larger datasets.

Table 2: Accuracy (Precision in %) of LAI-Net trained on synthetic data that is X X larger than
real data and evaluated on haptool-admixed-30 test data. The synthetic data was generated by PCA-
DDPM (top of table) or Bernoulli model (bottom of table). Ancestry coefficients in test data are
0.16,0.33,0.51 for AFR, EAS, EUR respectively. LAI-Net was trained 10 times, with each training
run using a different random seed for sampling from the same generative model. Results of the same
experiment on haptool-admixed-60 are given in Table[S2]

AFR EAS EUR Weighted
average

Real 93.65+0.12 94.6 +0.14 95.67 +0.07 95.0+0.08
PCA-DDPM

same size (Tablem) 93.49 +0.15 93.36 = 0.16 95.02 & 0.06 94.23 + 0.08
4x larger 93.62 0.1 93.72+£0.14 95.124+0.1 9442 4+ 0.05
Bernoulli

same size (Table 849 +£3.21 79.33+£294 8893 £ 1.56 85.12 +2.27
2x larger 84.11 £ 1.7 78.78 = 1.66 88.63 = 0.74 84.65 £ 1.16
4x larger 83.41 £0.71 78.03 & 0.53 88.31 £0.35 84.13 +£0.44
6x larger 84.93 £2.71 79.81 £2.62 89.19 +1.27 85.41 + 1.93

3.5 Data augmentation

Synthetic data can be particularly useful to alleviate overfitting caused by small sample sizes. They
can be used to augment the entire distribution of real data or specifically target low-density regions
associated with under-represented classes. To investigate this, we trained LAI-Net on varying amount
of real samples, ranging from 1% (= 12 haploid sequences) of the real training set to 100% (= 2136
haploid sequences), while having a fixed amount synthetic sequences (set to 8554). Each time, the
generative model was trained on 100% of the real training data. This represents a scenario where
a private data-holder shares either a generative model trained on private training data, or artificial
genomes from one or multiple such generative models, but not the private data itself. For both
haptool-admixed-30 and haptool-admixed-60 test datasets, LAI-Net trained on real data augmented
with synthetic samples from PCA-DDPM outperformed other approaches when the percentage of
true samples was low (up to 25 % of the original dataset). This indicates that data augmentation
with high quality synthetic samples is beneficial for LAI when training data is limited and does
not comprehensively represent the overall real distribution. Moreover, we also observed that the
Bernoulli-augmented model performs worse than the non-augmented baseline for all percentages of
true samples above 1%, which suggests that not all augmentation is good and adding data from a
poor generative model can be detrimental to the classifier (FIGJ3).

3.6 Deep Generative Ensemble

All different setups related to the DGE analysis (Naive, Naive big, DGE and DGE big, see Methods
[2.6) performed only slightly worse than the original model trained on the real dataset (orange
diamonds), with a mean accuracy of 94.84 & 0.1, 94.16 £ 0.06, 94.42 + 0.03, 94.23 £+ 0.03
and 94.43 + 0.03 for Real, Naive, Naive big, DGE and DGE big, respectively (FIG. E]) This
corresponds to accuracies 0.4-0.7% lower for haptool-admixed-30 test data and 0.3-0.6% lower for
haptool-admixed-60 test data. We observed that increasing synthetic sample size improved the model
evaluation, i.e., Naive big yielded 0.2% improvement over Naive, and likewise DGE big yielded 0.2%
over DGE. DGE was marginally above the Naive approach for haptool-admixed-30 test data, and
comparable on haptool-admixed-60 test data, while DGE big and Naive big were comparable across
both datasets. All these methods fall in between the test accuracy of a model trained on real data with
sample size ranging from 25% to 50% of the real sample size (horizontal dashed lines in FIG. d).
Overall, considering y-scale of FIG. [} the DGE approaches yielded marginal improvements over the
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Figure 3: Data augmentation. Accuracy of LAI-Net evaluated on artificially haptool-admixed-30
(30 generations) and haptool-admixed-60 (60 generations) test datasets consisting of real AFR, EAS
and EUR, and trained on: (i) varying amount of true training samples (blue curve); (ii) varying
amount of true training samples augmented with 8554 synthetic haploid sequences from PCA-DDPM
(orange curve).; (iii) varying amount of true training samples augmented with 8554 synthetic haploid
sequences from the Bernoulli model (green curve). For each amount of true training samples, the
experiment was repeated 5 times with different random splits of real data each time. The test accuracy
was averaged over the populations with weights corresponding to the ancestry coefficients (AFR:0.16,
EAS:0.33, EUR:0.51).

Naive approach. Moreover, increasing synthetic sample size (Naive big and DGE big) only slightly
increased test accuracy.

Deep Generative Ensemble (DGE), K=5, 10 runs
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Figure 4. Deep Generative Ensemble. Accuracy of LAI-Net trained on only real data (orange
diamond) or synthetic data from PCA-DDPM (Naive in red; Naive big in purple; DGE in blue; DGE
big in dark blue). For each scenarios, we repeated the training of LAI-Net 10 times, and in particular
for the DGE and DGE big (see Methods [2.6)), the ensemble approach involved K = 5 iterations
of training amounting to a total of 50 trained models. These results were averaged over K. The
horizontal dashed lines correspond to LAI-Net trained on 2% of real sample size (as in FIG)
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4 Discussion and conclusion

This study tackled the assessment of the usefulness of artificial genomes via a population genetics
downstream task, namely local ancestry inference (LAI). We first developed a novel conditional
diffusion model, Light PCA-DDPM, to generate high-quality synthetic haplotypes conditioned on
super-population labels. Light PCA-DDPM, with only 400K learnable parameters, can be considered
as an effective frugal alternative to more complex sequence modeling architectures while allowing
the rapid generation of realistic synthetic data (see computational efficiency in Table[ST|and quality
in FIG.[S2). We then benchmarked the generated genomes by training a neural network based
LAI method, LAI-Net, on this synthetic data and evaluated its performance on datasets of varying
degrees of difficulties. We observed similar test accuracy for LAI-Net trained on real data and on
high-quality synthetic data, indicating that the information content, as perceived by a LAI method,
is similar in synthetic and real data. In contrast, LAI-Net trained on synthetic data from the simple
Bernoulli model displayed significantly worst performances with lower classification accuracies
(Table[T). This demonstrates that higher-order information, as captured by deep generative models,
are needed for LAIL Furtermore, even though increasing high-quality synthetic sample size did not
affect LAI-Net performance, PCA-DDPM-based data augmentation was especially beneficial when
real data was limited to the user, presenting a promising finding for practical applications where
the complete distribution of real data is often not fully available through public databases. We also
explored the Deep Generative Ensemble (DGE) approach which showed only marginal improvements
over Naive scenarios. [van Breugel et al.| (2023)) found that DGE does not always improve predictive
accuracy over using real data, and the performance gain depends on the dataset and task to be
solved. Training multiple classifiers in an ensemble fashion provides both the mean and variance
of predictions, enabling the estimation of predictive uncertainty (Abdar et al., 2021). Beyond that,
an important advantage of DGE is its ability to mitigate potential generative errors in downstream
tasks by accounting for uncertainties in the generative model, and consequently, in the synthetic data
(Decruyenaere et al., 2024; Raisd et al., [2023).

Interestingly, although the baseline random matrix Bernoulli model generates synthetic genomes of
notably poor quality (FIGS2), it still holds practical utility by providing a training data substrate
that enables relatively good classification performance. This distinction between quality and utility
suggests that synthetic genomes can be tailored for specific tasks in applied settings, without placing
excessive emphasis on general quality thresholds.

A promising use-case for artificial genomes could be addressing dataset imbalance prevalent in
genomic research, particularly due to underrepresented groups. As we demonstrated in this work,
artificial genomes can be used as alternatives to real genomes with comparable performance on
complex tasks. Here we explored scenarios where the training data for generative models sufficiently
covers different modes (i.e., super-populations) but we did not focus on conditional generation on
smaller modes such as populations. Modeling the low-density regions of the data space is challenging,
as generative models tend to struggle with accurately capturing the distribution of these sparse areas.
Future work can explore approaches to overcome this difficulty, potentially by auditing the sampling
process with an acceptance criterion to ensure that samples from low-density regions are adequately
represented (Alaa et al.,[2022).

Overall, this study demonstrates fast and high-quality generation of artificial genomes using a novel
compact diffusion model, and confirms their usefulness for local ancestry inference by achieving
comparable performance to predictive models trained on real data. This advance opens new avenues
for using synthetic data to enhance genomic research, particularly when real data is limited or access
is constrained.
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S1 Appendix

S1.1 Dataset description

Number of samples per subpopulation

206 210 208 208 206 204 204
200 19 198 198 102
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ACB ASW ESN GWD LWK MSL YRI CDX CHB CHS JPT KHV CLM MXL PEL PUR CEU FIN GBR IBS TSI BEB GIH ITU PL STU

Figure S1: Distribution of the data per population. Population labels refer to intra-continental
populations: ACB (African Caribbean in Barbados), ASW (African Ancestry in Southwest US), ESN
(Esan in Nigeria), GWD (Gambian in Western Division, The Gambia - Mandinka), LWK (Luhya in
Webuye, Kenya), MSL (Mende in Sierra Leone), YRI (Yoruba in Ibadan, Nigeria), CDX (Chinese
Dai in Xishuangbanna, China), CHB (Han Chinese in Beijing, China), CHS (Han Chinese South),
JPT (Japanese in Tokyo, Japan), KHV (Kinh in Ho Chi Minh City, Vietnam), CLM (Colombian in
Medellin, Colombia), MXL (Mexican Ancestry in Los Angeles, California), PEL (Peruvian in Lima,
Peru), PUR (Puerto Rican in Puerto Rico), CEU (Utah residents (CEPH) with Northern and Western
European ancestry), FIN (Finnish in Finland), GBR (British in England and Scotland), IBR (Iberian
populations in Spain), TSI (Toscani in Italy), BEB (Bengali in Bangladesh), GIH (Gujarati Indians in
Houston, TX), ITU (Indian Telugu in the UK), PJL (Punjabi in Lahore, Pakistan), STU (Sri Lankan
Tamil in the UK).

S1.2  Light PCA-DDPM architecture

The denoising neural network has 400K parameters, and achieves great generative abilities at 20K
steps, amounting to a training time (wall clock) of roughly 10 minutes on a single A100-40GB GPU.
The number of diffusion steps is set to 1,000. Sampling the DDPM to generate thousands of samples
takes only few seconds.

* Label embedding layer: nn.Embedding(3, 3)
* Time encoding layer: SinusoidalTimeEmbedding
* Predictor:

Input layer: concatenation of 6 features and 3 label features
Linear input layer: 256 neurons
1st residual block:
+ Linear transformation with 256 neurons
* Time integration via linear transformation with 256 neurons
+ Linear transformation with 256 neurons
+ Residual connection added
2nd residual block:
+ Linear transformation with 256 neurons
* Time integration via linear transformation with 256 neurons
+ Linear transformation with 256 neurons
+ Residual connection added

— Output layer: 6 neurons
* Forward pass:
— Input tensor x;, time tensor, and super-population label processed through:
Embedding layer to obtain label representation
Concatenation of z; and label embedding
Linear transformation to the input layer
Activation function applied to each layer

*

* % *
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% Residual connections added after each block
+ Final output layer produces 6 outputs

» Optimizer: Adam with initial learning rate 0.0003
* Learning rate scheduler: CosineAnnealingWarmRestarts

* Warmup scheduler: LinearWarmup with 1000 steps warmup period

Table S1: Training GPU & runtime comparison between models for 65K SNP dataset

Models Params GPUs Wall clock
Light PCA-WGAN with NN 750K 1-A100-40GB  ~2 hours
Light PCA-DDPM 400K 1-A100-40GB ~10 minutes

S1.3 Relation between number of generations and window size

Haptools (Massarat et al.,2023) simulates admixed samples given ancestral source genomes, ancestry
coefficients, number of generations over which the forward simulation will run and a genetic map.
Below we explain the relationship between generations and expected size of the ancestral genomic
segments.

Let n be the number of generations, p the recombination rate, w the size of the window (in base-pairs,
abbreviated bp) defined by crossover events. For each position in a genome, at each generation,
there is a probability p of recombination occurring at that site. The probability of having at least one
recombination at a single position during n generation is 1 — (1 — p)™, which as p ~ 10~ can be
approximated by np. We can now model recombination as a Bernoulli trial, where the distance w
between successive recombination events follows a geometric law of parameter p = 1—(1—p)™ ~ np.
The expected distance between recombination events is given by

1 1
Elw]=-=— (inbp)
p np
hence 1
Elw] = (in SNP)
nprD,

where pp, is the average distance between SNP in chromosome [, in bp unit and p can be estimated
from a genetic map. For the 65,535 SNP data spanning chr1:534247-81813279, we estimated
p =23 x 1078 and D ehrt oy = 1240bp. For n = 30, we have E[w] = 6183 SNPs, i.e., the
average window size defined by a crossover events is ~ 12x larger than LAI-Net resolution set to
500 SNPs. Note that a crossover event can link together segments of the same ancestry, however we
are only interested here to crossover events corresponding to changes in ancestry meaning that actual
average window size will be higher. Precisely, let a be an ancestry of proportion x,, in the population.
At a recombination event, any segment then has probability (1 — x,) to recombine with a segment of
an ancestry different of a. Therefore the average length of a segment of ancestry a will be

Elw]
1—x,

In our case it means, for 30 generations, an average segment length of 7361 SNPs for AFR, 9228
SNPs for EAS and 12618 SNPs for EUR.
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S1.4 High quality artificial genomes
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Figure S2: Population genetics summary statistics. The real and the synthetic data were concate-
nated into a single dataset, to which PCA is applied. Upper left. The 1D Wasserstein distance is
computed on each PCs. Real data is the grey curve, Bernoulli in orange, Light PCA-DDPM in pink
and Light PCA-WGAN from (Yelmen et al., 2023) in dark purple. The density plot of real data
for the first six PCs is shown. Upper middle. LD decay approximation. The inset is a zoom on
small LD values. Upper right. Three-points correlation (3pt-corr) for triplets separated by a varying
amount of SNPs, displayed as Corr( 3pt-corr[synthetic data], 3pt-corr[real data] ). Lower middle.
2D Histogram of the allelic frequencies in real data (x-axis) and in AGs produced by the models.
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Coupled PCA
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Figure S3: Coupled PCA. Real and synthetic samples are concatenated into a single dataset upon
which PCA is applied. Synthetic samples are generated by Bernoulli (orange), Light PCA-DDPM
(pink), Light PCA-WGAN (dark purple). First row corresponds to (PC1,PC2), second to (PC3,PC4)
and third to (PC5,PC6).
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S1.5 Increasing synthetic sample size

Table S2: Accuracy (Precision in %) of LAI-Net trained on synthetic data that is X x larger than
real data and evaluated on haptool-admixed-60 test dataset. The synthetic data was generated by
PCA-DDPM (top of table) or Bernoulli model (bottom of table) . Ancestry coefficients in test data are
0.16,0.33,0.51 for AFR, EAS, EUR respectively. LAI-Net was trained 10 times, with each training

run using a different random seed for sampling from the same generative model.

AFR EAS EUR Weighted
average

Real 88.29 +£0.19 90.99 4+ 0.12 92.94 + 0.08 91.55 £ 0.06
PCA-DDPM

same size (Table 88.57 £ 0.34 89.78 £ 0.15 92.25 +£0.11 90.85 £ 0.09
4x larger 88.56 £ 0.21 90.31 & 0.18 92.38 £ 0.12 91.08 £ 0.04
Bernoulli

same size (Table 79.0+34 76.25+256 87.19+1.02 8227419
2x larger 78.17 £1.81 757+ 1.41 87.024+0.48 81.87 +0.96
4x larger 77.55 £0.84 7525 +0.39 86.93 +0.23 81.57 = 0.34
6x larger 78.98 =229 76.66 +£2.32 87.46 4+ 0.84 82.54 + 1.64
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